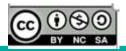


BPS1353 Hazard Recognition & Risk Management

Hazard Identification (HAZID) – part II

by Dr. Hanida Abdul Aziz Faculty of Engineering Technology hanidaaziz@ump.edu.my



Communitising Technology

Chapter Description

• Aims

- Explain the methods of identifying potential hazards at workplace
- Demonstrate hazard identification process
- Expected Outcomes
 - Able to describe on how to identify hazard at workplace
 - Able to conduct hazard identification at workplace
- References
 - Crow and Louvar, 1990, Chemical process safety: fundamentals with applications. Pearson Education, London

Content

• Hazard Analysis Techniques

Hazard Analysis Technique

Brainstorming	 Whatever anyone can think of 		
Checklists	 Questions to assist in hazard identification 		
Job safety analysis	Procedures		
'What If' Analysis	 Possible outcomes of change 		
HAZOP	 Identifies process plant type incidents 		
FTA	 Combination of failures 		
ETA	 Possible outcomes of incident from initiating event 		

BRAINSTORMING

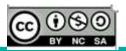
Advantages

- Good starting point for many HAZID techniques to focus a group's ideas
- Allows employees
 experience to surface
- Enable 'thinking outside the box'

Disadvantages

- Less rigorous and less systematic
- High risk of missing hazards unless combined with other techniques
- Relies on experience and competency of facilitator

CHECKLIST

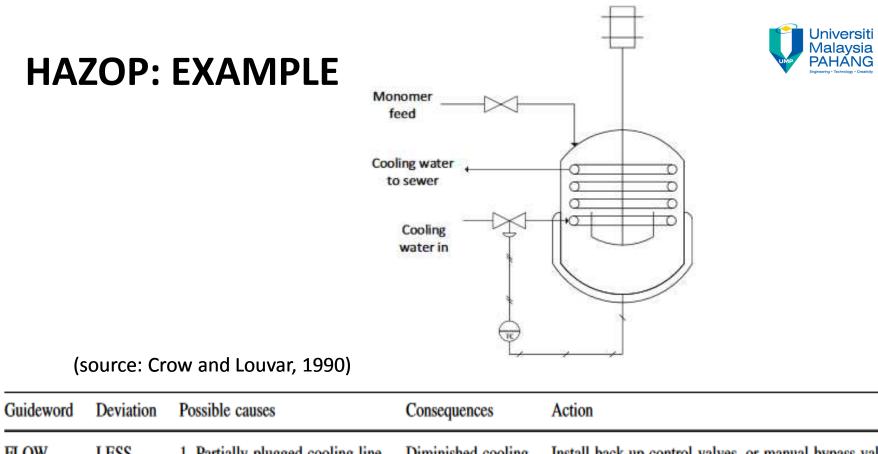


Advantages

- Suitable as a cross check review tool
- Safety management system compliance checking tool

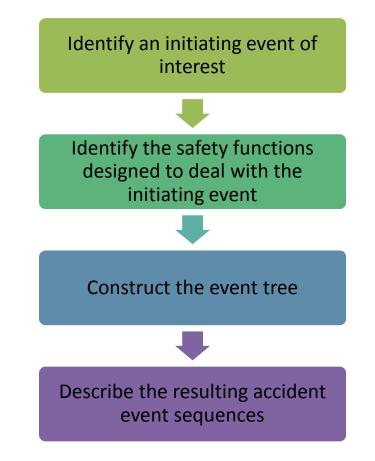
Disadvantages

- Limit the creative thinking
- Potential of limiting to already known hazards
- Less ability to satisfy regulatory requirements if used alone

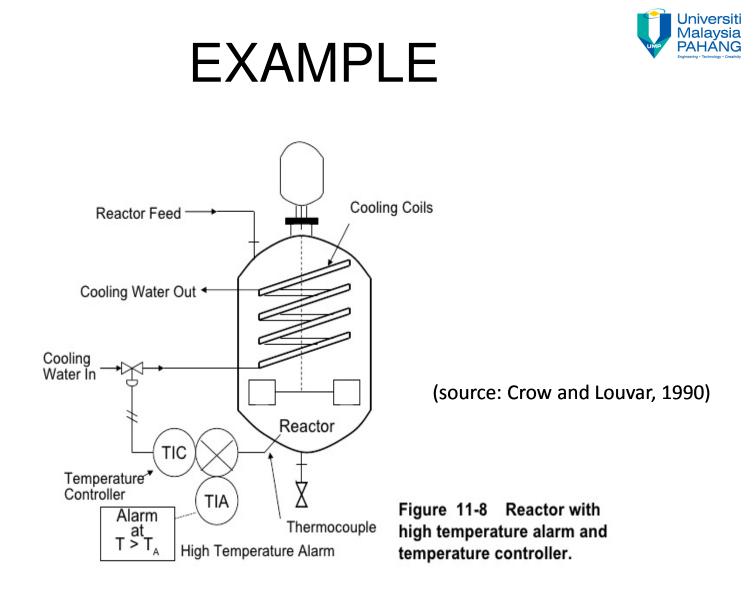


WHAT-IF ANALYSIS: EXAMPLE

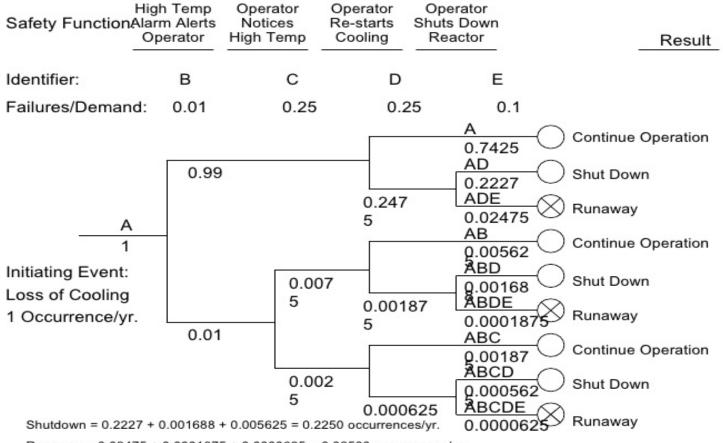
PROCESS UNIT	WHAT IF	CAUSES	CONSEQUENCES
	Operating error and other human factors (OE&HF)	Mal-operation of valves	Potential overpressure if valves are inadvertently closed.
	Analytical or sampling errors (A/SE)	Sampling of high pressure liquid.	Potential of release of H2S during sampling resulting in exposure to personnel.
		Sampling of high temperature liquid.	Potential injury to personnel due to high temperature of sample.
	Process upsets of unspecified origin (PUUO)	Malfunction of thermocouple.	Potential overpressures of autoclave due to high pressure build up leading to loss of containment (LOC).
Autoclave (toxic chemicals, High pressure, high temperature unit)	Utility failures (UF)	Power Failure	Potential release of toxic gas within lab area resulting in exposure to personnel.
		Ventilation system fail	Lack of positive pressure in the lab area.
		No water supply for cooling of bearing at rotating equipment.	Potential overheat of magnetic bearing resulting in bearing damage and leak. Loss of containment (LOC).
	Integrity failure or loss of containment (IF/LOC)	Refer to Process upsets of unspecified origin (PUUO)	
		Leakage through to fitting due to wear and tear.	Potential release of flammable / toxic gas within lab area resulting in exposure to personnel.
	Environmental release (ER)	Refer to Integrity failure or loss of containment (IF/LOC) and Equipment/instrumentation malfunction (E/IM)	



Guideword	Deviation	Possible causes	Consequences	Action
FLOW	LOW LESS 1. Partially plugged cooling line Diminished cooling Possible runaway		Install back-up control valves, or manual bypass valve Install back-up controller Install control valve that fails open	
		 Partial water source failure Control valve fails to respond 		Install high temperature alarm to alert operator Install filters to prevent debris from entering line Install back-up cooling water source Install cooling water flow meter and low flow alarm



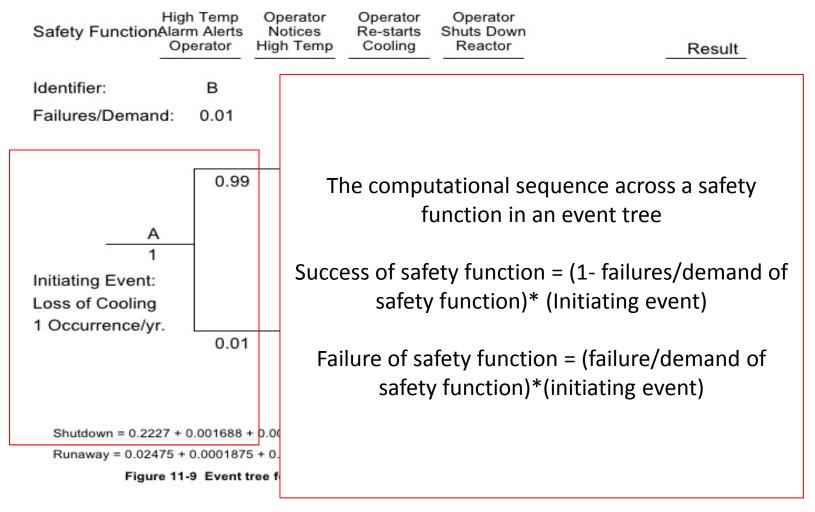
TYPICAL STEPS IN ETA



CC

EXAMPLE

Runaway = 0.02475 + 0.0001875 + 0.0000625 = 0.02500 occurrences/yr.


(source: Crow and Louvar, 1990)

Communitising Technology

EXAMPLE

(Sources: Crow and Louvar, 1990)

Communitising Technology

Conclusion

Hazard analysis can be conducted via several structured techniques.

