BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING

Alternating Current Circuits : Sinusoids and Phasors

Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang

Alternating Current Circuit (AC)-Sinusoids and Phasors BFF1303 ELECTRICAL/ELECTRONICS ENGINEERING

Faculty of Manufacturing

Contents:

- Outcomes
- Introduction
- Sinusoids
- Phasor
- Phasor Relationship
- Impedance

Draw the power triangle, and compute the capacitor size required to perform
power factor correction on a load.

Convert time-domain sinusoidal voltages and currents to phasor notation, and vice versa; represent circuit using impedance

Learn complex power notation; compute apparent power, real, and reactive power for complex load.

Solve steady-state ac circuits, using phasors and complex impedances.

Introduction

This chapter will focus on circuit analysis with varying source voltage or current(sinusoidally).

In sinusoid is a signal that has the form of the sine or cosine function.
nA sinusoidal current is usually referred to as alternating current (AC).

Introduction

IAC is an electrical current whose magnitude and direction vary sinusoidally with time.
Such a current reverses at regular time intervals and has alternately positive and negative values.

Variation of voltage versus time

Introduction

The circuits analysis is considering the time-varying voltage source or current source.
[ircuits driven by sinusoidal current or voltage sources are called ac circuits.
[1 A sinusoid can be express in either sine or cosine form.

Generating AC Voltage

IOne way to generate an ac voltage is to rotate a coil of wire at constant angular velocity in a uniform magnetic field.

The magnitude of the resulting voltage is proportional to the rate at which flux lines are cut.

(a) 0° Position: Coil sides move parallel to flux lines. Since no flux is being cut, induced voltage is zero.

(c) 180° Position: Coil again cutting no flux. Induced voltage is zero.

(b) 90° Position: Coil end A is positive with respect to B. Current direction is out of slip ring A.

(d) 270° Position: Voltage polarity has reversed, therefore, current direction reverses.

Waveform Definition and Terms

慮Period - the time taken to complete a cycle, $T(s)$
[Peak value - the maximum instantaneous value measured from its zero value, $V_{p} @ V_{m}(V)$

EPeak-to-peak value - the maximum variation between the maximum positive instantaneous value and the maximum negative value, $V_{p-p}(V)$

Introduction

Sinusoids

angular frequency in radian/second
[Consider the expression of a sinusoidal voltage

amplitude of sinusoid

Sinusoids

The sinusoid repeats itself every T seconds, thus T is called the period of the sinusoid or the time taken to complete one cycle. (s)

Sinusoids

The number of cycles per second is called frequency, $f .(\mathrm{Hz})$

$$
f=\frac{1}{T}
$$

Angular frequency, ω. $(\mathrm{rad} / \mathrm{sec})$

$$
\omega=2 \pi f
$$

$$
\omega=\frac{2 \pi}{T}
$$

In An important value of the sinusoidal function is its RMS (root-mean-square) value.

$$
V_{r m s}=\frac{V_{m}}{\sqrt{2}}=V_{d c}
$$

ω Usually expressed in radians per second
θ is expressed in degree

2π radians $=360^{\circ}$

to convert from degrees to radians, multiply by

$$
\frac{\pi}{180}
$$

to convert from radians
to degrees, multiply by
180
π

Sinusoids

LIf the waveform does not pass through zero at $t=0$, it has a phase shift.

Wor a waveform shifted left,

$$
v(t)=V_{m} \sin (\omega+\phi)
$$

[i-For waveform shifted right,
phase angle of sinusoid function

$$
v(t)=V_{m} \sin (\omega-\widehat{\phi})
$$

Sinusoids

$$
v(t)=V_{m} \sin (\omega t+\phi)
$$

Sinusoids

Find the amplitude, phase, period and frequency of the sinusoid

$$
v(t)=12 \sin \left(50 t+10^{\circ}\right)
$$

Solution

Amplitude $\quad V_{m}=12 \mathrm{~V} \quad$ Period $\quad T=\frac{2 \pi}{\omega}=0.1257 \mathrm{~s}$

Phase

$$
\phi=10^{\circ}
$$

Angular frequency

$$
\omega=50 \mathrm{rad} / \mathrm{s}
$$

Frequency $f=\frac{1}{T}=7.958 \mathrm{~Hz}$

A sinusoidal voltage is given by the expression

$$
v=300 \cos \left(120 \pi t+30^{\circ}\right)
$$

i. What is the frequency in Hz ?
ii. What is the period of the voltage in miliseconds?
iii. What is the magnitude of v at $t=2.778 \mathrm{~ms}$?
iv. What is the RMS value of v ?

Solution

frequency $f=\frac{\omega}{2 \pi}=60 \mathrm{~Hz}$
period $\quad T=\frac{1}{f}=16.667 \mathrm{~ms}$

BFFI303 Electrical/Electronic Engineering

$$
\begin{aligned}
& v=300 \cos \left([120 \pi \times 2.778 \mathrm{~m}]+30^{\circ}\right) \\
& v=300 \cos \left(60^{\circ}+30^{\circ}\right)=0 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
V_{r m s} & =\frac{V_{m}}{\sqrt{2}} \\
V_{r m s} & =212.13 \mathrm{~V}
\end{aligned}
$$

Sinusoids

$$
v_{1}(t)=V_{m} \sin \omega t
$$

Sinusoids

The v_{2} is occurred first in time.

Thus it can be said that v_{2} leads v_{1} by φ or v_{1} lags v_{2} by φ.

LIf $\varphi \neq 0$ we can say v_{1} and v_{2} are out of phase.

WIf $\varphi=0$ we can say v_{1} and v_{2} are in phase.
v_{1} and v_{2} scan be compared in this manner because they operate at the same frequency (do not need to have the same amplitude).

Sinusoids

TTransformation between cosine and sine form

$$
\begin{aligned}
& \sin A \Rightarrow \cos \left(A-90^{\circ}\right) \\
& \cos A \Rightarrow \sin \left(A+90^{\circ}\right)
\end{aligned}
$$

Il Converting from negative to positive magnitude

$$
\begin{aligned}
-\sin A & \Rightarrow \sin \left(A \pm 180^{\circ}\right) \\
-\cos A & \Rightarrow \cos \left(A \pm 180^{\circ}\right)
\end{aligned}
$$

$$
\text { where } \quad A=\omega t+\phi
$$

For the following sinusoidal voltage, find the value v at $t=0 \mathrm{~s}$ and $t=0.5 \mathrm{~s}$.

$v=6 \cos \left(100 t+60^{\circ}\right)$

Solution

$$
\begin{aligned}
& \text { at } t=0 \mathrm{~s} \\
& v=6 \cos \left(0+60^{\circ}\right) \\
& v=3 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { at } t=0.5 \mathrm{~s} \\
& v=6 \cos \left(50 \mathrm{rad}+60^{\circ}\right) \\
& v=4.26 \mathrm{~V}
\end{aligned}
$$

Note: both ωt and φ must be in same unit before adding them up.

Calculate the phase angle between

$$
\begin{aligned}
& v_{1}=-10 \cos \left(\omega t+50^{\circ}\right) \\
& v_{2}=12 \sin \left(\omega t-10^{\circ}\right)
\end{aligned}
$$

State which sinusoid is leading.

Solution

In order to compare v_{1} and v_{2}, we must express them in the same form (either in cosine or sine function) with positive magnitude. Note: the value of φ must be between 0° to $\pm 180^{\circ}$

$$
\begin{aligned}
& v_{1}=-10 \cos \left(\omega t+50^{\circ}\right)=10 \cos \left(\omega t+50^{\circ}-180^{\circ}\right) \\
& v_{1}=10 \cos \left(\omega t-130^{\circ}\right) \\
& v_{2}=12 \sin \left(\omega t-10^{\circ}\right)=12 \cos \left(\omega t-10^{\circ}-90^{\circ}\right) \\
& v_{2}=12 \cos \left(\omega t-100^{\circ}\right)
\end{aligned}
$$

the equation v_{2} can be written in the following form

$$
\begin{aligned}
& v_{2}=12 \sin \left(\omega t-10^{\circ}\right)=12 \cos \left(\omega t-10^{\circ}-90^{\circ}\right) \\
& v_{2}=12 \cos \left(\omega t-130^{\circ}+30^{\circ}\right)
\end{aligned}
$$

$'+30^{\circ}$ in the above expression means v_{2} leads v_{1} by 30°

ESinusoid can be express in terms of phasors, which are more convenient to work with than sine and cosine functions.

19 phasors is a complex number that can be represents the amplitude and the phase of a sinusoid.

WThe frequency term is dropped since we know that the frequency of the sinusoidal response is the same as the source.

The sine/cosine expression is also dropped since we know that the response and source are both sinusoidal.

Phasors

$r=a \pm j b \quad$ Rectangular form
 Real part Imaginary part

$\mathbf{V}=r \angle \theta \quad$ Polar form
$\mathbf{V}=r e^{j \theta}$
\section*{Exponential form}

Ine relationship between the rectangular form and the polar form is shown below:

Imaginary axis
2j-

$$
\begin{array}{cl}
r=\sqrt{x^{2}+y^{2}} & \phi=\tan ^{-1} \frac{y}{x} \\
x=r \cos \phi & y=r \sin \phi
\end{array}
$$

Then z can be written as

$$
z=x+j y=r \angle \phi=r \cos \phi+j(r \sin \phi)
$$

Note: addition and subtraction of complex number better perform in rectangular form. Multiplication and division in polar form.

Phasors

19 Basic properties of complex number:
Addition

$$
r_{1}+r_{2}=\left(a_{1}+a_{2}\right)+j\left(b_{1}+b_{2}\right)
$$

Subtraction

$$
r_{1}-r_{2}=\left(a_{1}-a_{2}\right)+j\left(b_{1}-b_{2}\right)
$$

Multiplication

$$
r_{1} r_{2}=a_{1} a_{2} \angle\left(\theta_{1}+\theta_{2}\right)
$$

Division

$$
\frac{r_{1}}{r_{2}}=\frac{a_{1}}{a_{2}} \angle\left(\theta_{1}-\theta_{2}\right)
$$

Euler Identities

$$
\begin{array}{cc}
\cos (\theta)=\frac{e^{j \theta}-e^{-j \theta}}{2} & \cos (\theta)=\frac{e^{j \theta}-e^{-j \theta}}{2 j} \\
e^{j \theta}=\cos (\theta)+j \sin (\theta) & e^{-j \theta}=\cos (\theta)-j \sin (\theta) \\
\left|e^{j \theta}\right|=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta} & \cos ^{2} \theta+\sin ^{2} \theta=1 \\
\left|e^{j \theta}\right|=1 & \cos \theta=\operatorname{Re}(\cos \theta+j \sin \theta)
\end{array}
$$

Phasors

II First, consider the cosine function as in:

$$
v(t)=V_{m} \cos (\omega t+\phi)
$$

This expression is in time domain.
[1] In phasor method, we no longer consider in time domain instead in phasor domain (also known as frequency domain).

The cosine function will be represented in phasor as:

$$
\mathbf{V}=V_{m} \angle \phi
$$

Phasors

The phasor representation carries only the amplitude and phase angle information.

1-The frequency term is dropped since we know that the frequency of the sinusoidal response is the same as the source.

The cosine expression is also dropped since we know that the response and source are both sinusoidal.

Phasors

[1] Sinusoid-phasor transformation:

$$
\begin{array}{lll}
V_{m} \cos (\omega t+\phi) & \Leftrightarrow & V_{m} \angle \phi \\
V_{m} \sin (\omega t+\phi) & \Leftrightarrow & V_{m} \angle\left(\phi-90^{\circ}\right) \\
I_{m} \cos (\omega t+\phi) & \Leftrightarrow & I_{m} \angle \phi \\
I_{m} \sin (\omega t+\phi) & \Leftrightarrow & I_{m} \angle\left(\phi-90^{\circ}\right)
\end{array}
$$

The phasor can be represented by a phasor diagram as shown below.

[1] Once a sinusoidal voltage or current is represented in its phasor form, simple arithmetic operation can be done.

Given $y_{1}=20 \cos \left(100 t-30^{\circ}\right)$ and $y_{2}=40 \cos \left(100 t+60^{\circ}\right)$. Express $y_{1}+y_{2}$ as a single cosine function.

Solution

In phasor form $y_{1}=20 \angle-30^{\circ} ; y_{2}=40 \angle 60^{\circ}$

$$
\begin{aligned}
y_{1}+y_{2} & =20 \angle-30^{\circ}+40 \angle 60^{\circ} \\
& =(17.31-j 10)+(20+j 34.64) \\
& =37.32+j 24.64 \\
& =44.72 \angle 33.4^{\circ}
\end{aligned}
$$

Thus, $y_{1}+y_{2}=44.72 \cos \left(100 t+33.4^{\circ}\right)$

Suppose that

$$
\begin{aligned}
& v_{1}(t)=20 \cos (\omega t-45) \\
& v_{2}(t)=10 \sin (\omega t+60)
\end{aligned}
$$

Find the total of this voltage and write into polar form
Solution

$$
\begin{aligned}
& \mathbf{V}_{1}=20 \angle-45 \\
& \mathbf{V}_{1}=14.14-j 14.14
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{V}_{2}=10 \angle-30 \\
& \mathbf{V}_{2}=8.660-j 5
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{V}_{s}=\mathbf{V}_{1}+\mathbf{V}_{2} \\
& \mathbf{V}_{s}=(14.14-j 14.14)+(8.660-j 5) \\
& \mathbf{V}_{s}=22.80-j 19.14 \\
& \mathbf{V}_{s}=29.77 \angle-40.01
\end{aligned}
$$

$$
v_{s}(t)=29.77 \cos (\omega t-40.01)
$$

Phasors

Phasors as rotating vector

[1] Consider a sinusoidal voltage given by;

$$
\begin{gathered}
v(t)=V_{m} \cos (\omega t+\theta) \quad v(t)=\operatorname{Re}\left[V_{m} e^{j(\omega t+\theta)}\right] \\
V_{m} e^{j(\omega t+\theta)}=V_{m} \angle(\omega t+\theta)
\end{gathered}
$$

(a)
(b)

As time increases, the sinor rotates on a circle of radius V_{m} at angular velocity of ω in the counterclockwise direction

Phasor Relationship

Consider the phasors

Imaginary axis

$$
\begin{aligned}
& \mathbf{V}=V_{m} \angle \phi \\
& \mathbf{I}=I_{m} \angle-\theta
\end{aligned}
$$

Resistor

Tet the current through the resistor

$$
i=I_{m} \cos (\omega t+\phi)
$$

Then the voltage across it is

$$
v=i R=R I_{m} \cos (\omega t+\phi)
$$

The phasor form of the voltage

$$
\mathbf{V}=R I_{m} \angle \phi
$$

The phasor form of the current

$$
\mathbf{I}=I_{m} \angle \phi
$$

Hence $\quad \mathbf{V}=R \mathbf{I}$

Relationship

Resistor

$\mathbf{V}=R \mathbf{I}$

From the equation, we know that the voltage and current are in phase. Then

Phasor

Relationship

Tlat the current through the inductor

$$
i=I_{m} \cos (\omega t+\phi)
$$

Then the voltage across it is

$$
v=L \frac{d i}{d t}=-\omega L I_{m} \sin (\omega t+\phi)
$$

We know that
$-\sin A=\cos \left(A+90^{\circ}\right)$

Then we can write the voltage as

$$
v=\omega L I_{m} \cos \left(\omega t+\phi+90^{\circ}\right)
$$

Phasor Relationship
 Inductor

Which transform to phasor

$$
\mathbf{V}=\omega L I_{m} \angle \phi+90^{\circ}
$$

The phasor form of the current

$$
\mathbf{I}=I_{m} \angle \phi
$$

Hence $\quad \mathbf{V}=j \omega L \mathbf{I}$
The voltage and current are 90° out of phase. Specifically, the current lags the voltage by 90°

[1] Let the voltage across the capacitor

$$
v=V_{m} \cos (\omega t+\phi)
$$

Then the current through it is

$$
\begin{aligned}
& i=C \frac{d v}{d t} \\
& \mathbf{I}=j \omega C \mathbf{V} \quad \Rightarrow \quad \mathbf{V}=\frac{\mathbf{I}}{j \omega C}
\end{aligned}
$$

Capacitor

The current and voltage are 90° out of phase. Specifically, the current leads the voltage by 90°

Summary of voltage-current relationships

The voltage $v=12 \cos \left(60 t+45^{\circ}\right)$ is applied to a 0.1 H inductor. Find the steady-state current through the inductor

Solution

Voltage for inductor is $\mathbf{V}=j \omega L \mathbf{I}$

$$
\omega=60
$$

where

$$
L=0.1
$$

$$
\begin{aligned}
& \mathbf{I}=\frac{\mathbf{V}}{j \omega L}=\frac{12 \angle 45}{j 60 \times 0.1}=\frac{12 \angle 45}{6 \angle 90} \\
& \mathbf{I}=2 \angle-45^{\circ} \mathrm{A}
\end{aligned}
$$

$$
i(t)=2 \cos \left(60 t-45^{\circ}\right) \mathrm{A}
$$

If voltage $v=10 \cos \left(100 t+30^{\circ}\right)$ is applied to a $50 \mu \mathrm{~F}$ capacitor, calculate the current through the capacitor

Solution

Voltage for capacitor is $\mathbf{V}=\frac{\mathbf{I}}{j \omega C}$

$$
\omega=100
$$

where

$$
C=50 \mu
$$

$$
\begin{aligned}
& \mathbf{I}=\mathbf{V}(j \omega C)=10 \angle 30(j 100 \times 50 \mu)=10 \angle 30(5 \mathrm{~m} \angle 90) \\
& \mathbf{I}=50 \angle 120^{\circ} \mathrm{mA}
\end{aligned}
$$

$$
i(t)=50 \cos \left(100 t+120^{\circ}\right) \mathrm{mA}
$$

Impedance

[1] The impedance \mathbf{Z} of a circuit is the ratio of the phasor voltage \mathbf{V} to the phasor current I, measured in ohms (Ω).

Resistor
$\frac{\mathbf{V}}{\mathbf{I}}=\mathbf{Z}_{R}$
$\mathbf{Z}_{R}=R$
$\mathbf{Z}_{L}=j \omega L$
$\mathbf{Z}_{C}=\frac{1}{j \omega C}$

Inductor
$\frac{\mathbf{V}}{\mathbf{I}}=\mathbf{Z}_{L}$

Capacitor

$$
\frac{\mathbf{V}}{\mathbf{I}}=\mathbf{Z}_{c}
$$

19 When $\omega=0, \mathbf{Z}_{L}=0$ inductor short circuit and $\mathbf{Z}_{C} \rightarrow \infty$ capacitor open circuit

When $\omega \rightarrow \infty, \mathbf{Z}_{L} \rightarrow \infty$ inductor open circuit and $\mathbf{Z}_{C}=0$ capacitor open circuit

Open circuit at dc

Impedance

In As a complex quantity, the impedance may be expressed in rectangular form as

Real $\mathbf{Z}=$ resistance
Imaginary $\mathbf{Z}=$ reactance
The impedance is inductive when X is positive or capacitive when X is negative.
$\mathbf{Z}=R+j X$ Inductive or lagging since current lags voltage
$\mathbf{Z}=R-j X \quad$ Capacitive or leading since current leads voltage

Impedance

The impedance may also be expressed in polar as

$$
\mathbf{Z}=|\mathbf{Z}| \angle \theta
$$

$|\mathbf{Z}|=\sqrt{R^{2}+X^{2}}$
$\theta=\tan ^{-1} \frac{X}{R}$
$R=|\mathbf{Z}| \cos \theta$

$$
X=|\mathbf{Z}| \sin \theta
$$

Find $v(t)$ and $i(t)$ in the circuit shown

Solution
The impedance

$$
\begin{aligned}
& v_{s}=10 \cos 4 t, \omega=4 \\
& \quad \mathbf{V}_{s}=10 \angle 0^{\circ}
\end{aligned} \quad \mathbf{Z}=R+\frac{1}{j \omega C}=5+\frac{1}{j(4)(0.1)}
$$

$$
\mathbf{Z}=5-j 2.5
$$

$$
\begin{aligned}
& \mathbf{V}=\mathbf{I Z} \\
& \mathbf{I}=\frac{\mathbf{V}}{\mathbf{Z}}=\frac{10 \angle 0}{5-j 2.5} \\
& \mathbf{I}=1.6+j 0.8=1.789 \angle 26.57^{\circ} \mathrm{A}
\end{aligned}
$$

The voltage across capacitor

$$
\begin{aligned}
& \mathbf{V}=\mathbf{I Z}_{C} \\
& \mathbf{V}=\frac{\mathbf{I}}{j \omega C}=\frac{1.789 \angle 26.57^{\circ}}{5-j 2.5} \\
& \mathbf{V}=4.47 \angle-63.43^{\circ} \mathrm{V}
\end{aligned}
$$

In time domain

$$
\begin{aligned}
& i(t)=1.789 \cos \left(4 t+26.57^{\circ}\right) \mathrm{A} \\
& v(t)=4.47 \cos \left(4 t-63.43^{\circ}\right) \mathrm{V}
\end{aligned}
$$

Notice that $i(t)$ leads $v(t)$ by 90° as expected

Example \#8

Determine $v(t)$ and $i(t)$

Answer

$$
\begin{aligned}
& v(t)=8.944 \sin \left(10 t+93.43^{\circ}\right) \mathrm{V} \\
& i(t)=4.472 \sin \left(10 t+3.43^{\circ}\right) \mathrm{A}
\end{aligned}
$$

