

BET4733 Introduction to Coastal Infrastructures

Coastal Sediment Transport

by Noor Asiah Mohamad Faculty of Engineering Technology noorasiah@ump.edu.my

Chapter Description

Expected Outcomes

Analyze the principles of wave mechanics, tides, littoral processes and coastal sediment transport in methods of shore protection and coastal infrastructures.

References

- 1) Kamphuis, J. William, Introduction to Coastal Engineering and Management, Advanced Series on Ocean Engineering-Volume 30, World Scientific, 2010.
- 2) Reeve D., Chadwick A. and Fleming C. Coastal Engineering-Processes, Theory and Design Practice, CRC Press, 2015.
- 3) Kim Y.C., Design of Coastal Structures and Sea Defences, World Scientific, 2015.
- 4) US Army Corps of Engineers. Coastal Engineering Manual, Washington, 1998-now.
- 5) Rosati, J. D. and Kraus, N. C., Sediment budget analysis system (SBAS), Coastal Engineering Technical Note CETN-N-20, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 1999.

CONTENTS

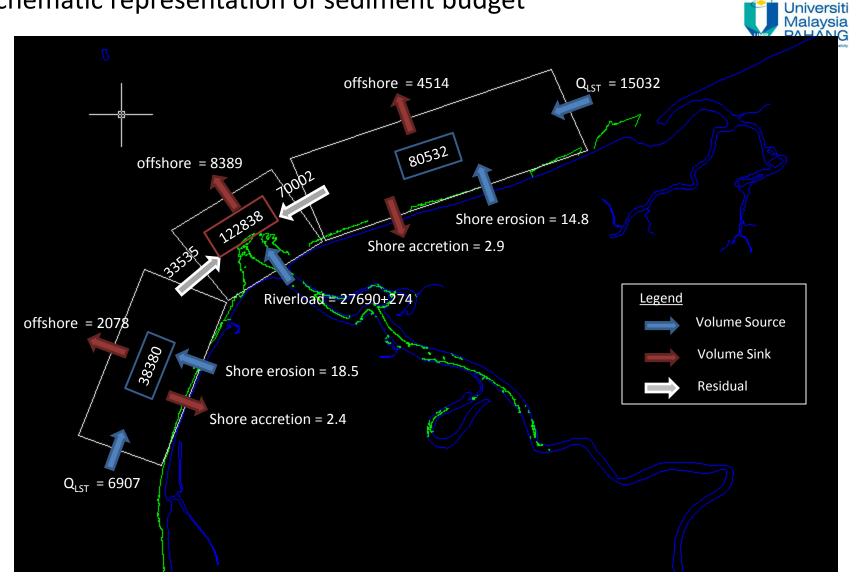
• Sediment Budget Analysis

• Sediment budget is a count of sediment gains (sources) and losses (sinks) over a given time within a specified control volume (Rosati and Kraus, 1999).

No	Sources	Sinks		
1	Longshore sediment transport	Longshore sediment transport		
2	Erosion of bluffs	Beach accretion		
3	Sediment from the rivers	Dredging of beach (or nearshore)		
4	Beach erosion	Mining nearshore		
5	Beach fill	-		
6	Dredge material	-		

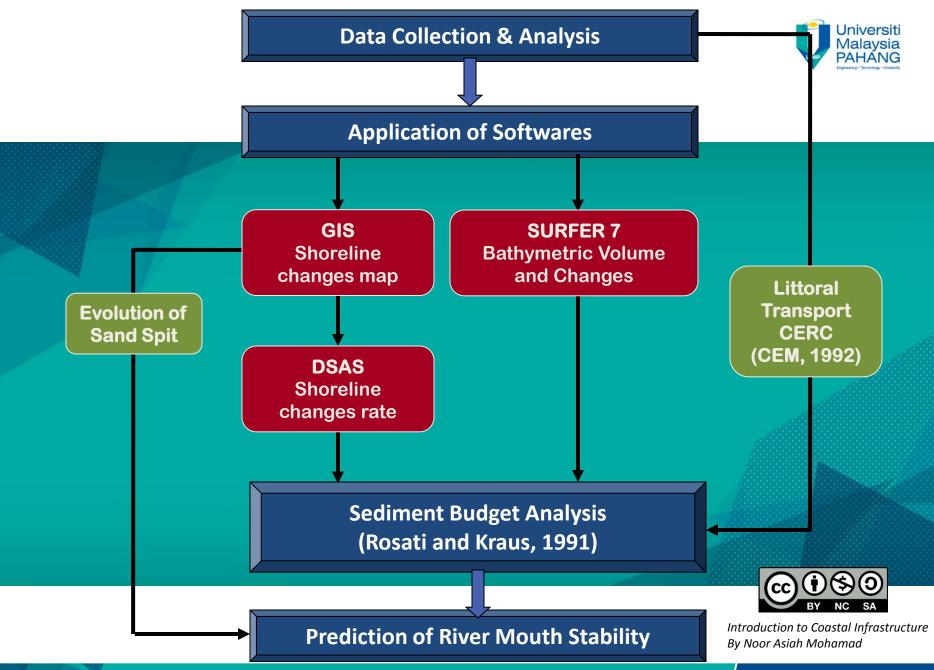
According to Rosati and Kraus (1999), sediment budget equation can be expressed as:

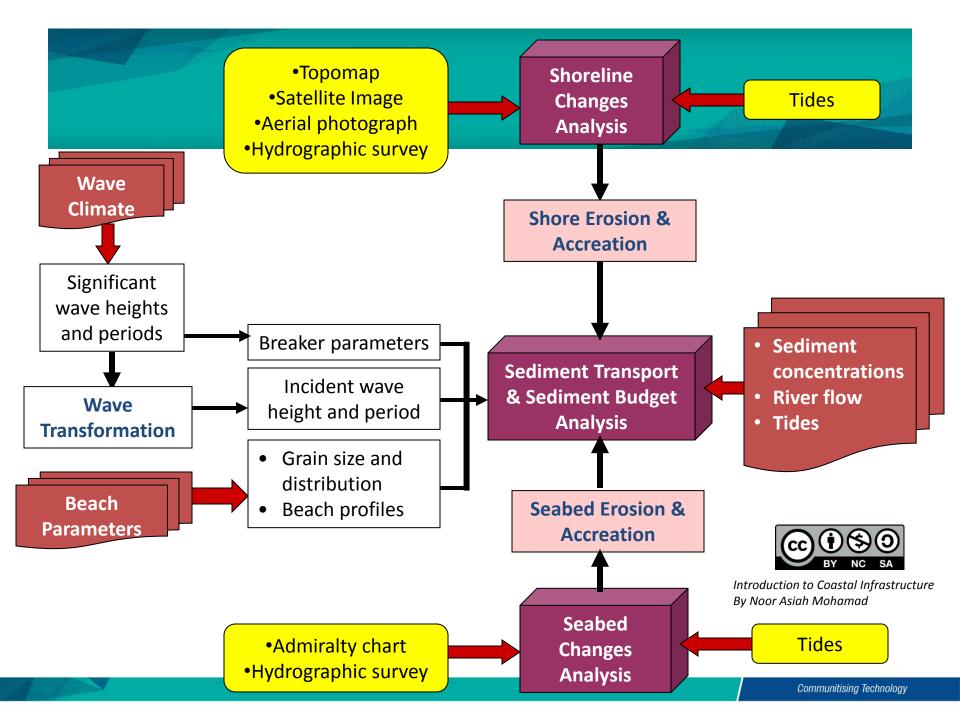
$\Sigma Q_{source} - \Sigma Q_{source} - \Delta V + P - R = Residual$


- All terms are expressed consistently as a volume (or as a volumetric change rate).
- Q_{source} = sources to the control volume (cv)
- Q_{sink} = sinks to the control volume
- ΔV = net change in volume within the cv
- *P* = amounts of material placed in cv
- *R* = amounts of material removed from the cv,
- *Residual* = degree to which the cv is balanced. *Residual* equal to zero if the budget of an individual cv is balanced.

No	Source	Sinks	
1	Aerial photography	Understanding the site	
2	Beach-profile (surveys)	Repetitive surveys to obtain volume change in the beach	
3	Shoreline-position data (from topographic analysis, HWL surveys, aerial photographs, beach-profile surveys, and bathymetric data)	Beach morphology Erosion/ accretion Sediment-transport pathways	
4	Bathymetry	Volume change in the beach	
5	History of engineering activities	-	

Schematic representation of sediment budget





	West sub-cell	Inlet sub-cell	East sub-cell
Longshore Sediment Transport	6907		15032
Sediment Load from Sungai Papar		27964	
Sediment Inflow due to shore erosion	18.6		15
Sediment Outflow due to shore accretion	-2.4		-2.7
Sediment Ouflow due to seabed erosion	-38380		-80532
Sediment Deposition		-122838	
Offshore Losses	-2078	-8389	-4514

Note: +ve indicates inflow to cell -ve indicates outflow from cell

Noor Asiah Mohamad

noorasiah@ump.edu.my B. Eng. Civil, UTP M. Eng. Civil, UTM

