

BET4733 Introduction to Coastal Infrastructure

Waves

by
Noor Asiah Mohamad
Faculty of Engineering Technology
noorasiah@ump.edu.my

Chapter Description

Expected Outcomes

Analyze the principles of wave mechanics, tides, littoral processes and coastal sediment transport in methods of shore protection and coastal infrastructures.

References

- 1) Kamphuis, J. William, Introduction to Coastal Engineering and Management, Advanced Series on Ocean Engineering-Volume 30, World Scientific, 2010.
- 2) Reeve D., Chadwick A. and Fleming C. Coastal Engineering-Processes, Theory and Design Practice, CRC Press, 2015.
- 3) Kim Y.C., Design of Coastal Structures and Sea Defences, World Scientific, 2015.
- 4) US Army Corps of Engineers, Coastal Engineering Manual, Washington, 1998-now.

CONTENTS

- Introduction
- Wave Generation
- Wave Motion
- Fetch Length
- Wave Classification
- Deep Water Wave Movement
- Wave Propagation
- Coastal Engineering Manual, USACE

INTRODUCTION

WAVES

ENERGY SOURCE

DETERMINE GEOMETRY AND COMPOSITION OF BEACHES

INFLUENCES PLANNING AND DESIGN OF COASTAL STRUCTURES

WAVE GENERATION

- Waves are formed by a disturbing force:
 - Wind
 - Underwater earthquake/landslides
 - Change in atmospheric pressure-seiches
- Restoring forces restore water to its restoring state:
 - Gravity = gravity waves
 - Surface Tension = capillary waves

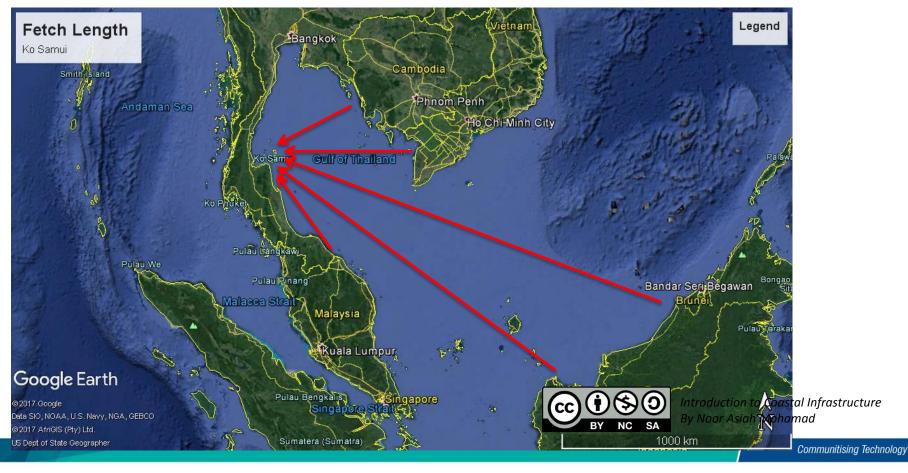
WAVE MOŢION

Wave Generation (e.g. wind)

*seas
*ripples
*chops

Wave Propagation

*swells


Wave Dissipation

* wave breakers

FETCH LENGTH

 Fetch Length: The horizontal distance in the direction of the wind over which a wind generates seas (Glossary of Coastal Terminology, 2012)

WAVE CLASSIFICATION

WAVE CLASSIFICATION

by

Wave Length

Seas

Generated by local wind field

Swells

Travelled over long distances from the generated area

by

Wave Period (or Frequency) and Estimated Relative Wave Energy Levels by

Relative Depth

WAVE CLASSIFICATION

Deep-water waves:

Transitional water waves:

Shallow water waves:

d/L > 1/2

1/2> d/L > 1/25

d/L < 1/25

L, v and h remain constant over long distances

L and v decrease,wave height "h" increase rounded tops form peaks

Particles at top of wave faster than bottom, and wave breaks

DEEP WATER WAVE MOVEMENT

 In deep water, while wave form moves, water particle below the surface move in stationary circular orbits that get smaller and smaller to a depth of about 0.5 L.

- In shallow or transitional water, water particle orbits are elliptical.
- H and L change but T remains constant.
- The waves become steeper and steeper and finally breaks in the surf zone.

WAVE PROPAGATION

- Waves can be affected by the following processes as they move from deep to shallow water:
 - ✓ Shoaling waves becoming higher (energy is compressed over a shorter distance) as they slow down to move from deeper water to shallower water
 - ✓ Refraction bending effect of wave crest in order to align with bottom contours or bathymetry
 - ✓ Breaking -
 - ✓ Diffraction wave energy is laterally transferred along a wave crest as the waves bend around an obstruction
 - ✓ Reflection wave energy is reflected back to sea as the waves hit into a rigid obstruction such as a breakwater, seawall, cliff or a sloping beach

WAVE BREAKERS

Spilling

Breaking occurs over a distance.

Plunging

Breaking is usually with a crash where smooth splash-up follows

Collapsing

Bubbles & foam are present.

Surging

Little or no bubbles production.

COASTAL ENGINEERING MANUAL USACE

http://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/u43544q/636F617374616C20656E67696E656572696E67206D616E75616C/

Relative Depth	Shallow Water	Transitional Water	Deep Water			
	$\frac{d}{L} < \frac{1}{25}$	$\frac{1}{25} < \frac{d}{L} < \frac{1}{2}$	$\frac{d}{L} < \frac{1}{2}$			
1. Wave profile	Same As >	$\eta - \frac{H}{2} \cos \left[\frac{2\pi x}{L} - \frac{2\pi t}{T} \right] - \frac{H}{2} \cos \theta$	< Same As			
2. Wave celerity	$C - \frac{L}{T} - \sqrt{gd}$	$C - \frac{L}{T} - \frac{gT}{2\pi} \tanh\left(\frac{2\pi d}{L}\right)$	$C - C_0 - \frac{L}{T} - \frac{gT}{2\pi}$			
3. Wavelength	L - T√gd - CT	$L = \frac{gT^2}{2\pi} \tanh\left(\frac{2\pi d}{L}\right)$	$L - L_0 - \frac{gT^2}{2\pi} - C_0T$			
4. Group velocity	$C_g - C - \sqrt{gd}$	$C_g - nC - \frac{1}{2} \left[1 + \frac{4\pi d/L}{\sinh(4\pi d/L)} \right] C$	$C_g = \frac{1}{2}C = \frac{gT}{4\pi}$			
 Water particle velocity 						
(a) Horizontal	$u - \frac{H}{2} \sqrt{\frac{g}{d}} \cos \theta$	$u = \frac{H}{2} \frac{gT}{L} \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} \cos \theta$	$u - \frac{\pi H}{T} e^{\left(\frac{2\pi x}{L}\right)} \cos \theta$			
(b) Vertical	$w = \frac{H\pi}{T} \left(1 + \frac{z}{d} \right) \sin \theta$	$w = \frac{H}{2} \frac{gT}{L} \frac{\sinh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} \sin \theta$	$w = \frac{\pi H}{T} e^{\left(\frac{2\pi x}{L}\right)} \sin \theta$			
6. Water particle accelerations						
(a) Horizontal	$a_x - \frac{H\pi}{T} \sqrt{\frac{g}{d}} \sin \theta$	$a_x = \frac{g\pi H}{L} \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} \sin \theta$	$a_x - 2H\left(\frac{\pi}{T}\right)^2 e^{\left(\frac{2\pi x}{L}\right)} \sin \theta$			
(b) Vertical	$a_z = -2H\left(\frac{\pi}{T}\right)^2 \left(1 + \frac{z}{d}\right) \cos \theta$	$a_z = -\frac{g\pi H}{L} \frac{\sinh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} \cos \theta$	$a_z = -2H\left(\frac{\pi}{T}\right)^2 e^{\frac{(2\pi z)}{L}} \cos \theta$			
7. Water particle displacements						
(a) Horizontal	$\xi = -\frac{HT}{4\pi} \sqrt{\frac{g}{d}} \sin \theta$	$\xi = -\frac{H}{2} \frac{\cosh[2\pi(z+d)/L]}{\sinh(2\pi d/L)} \sin \theta$	$\xi - \frac{H}{2} e^{\left(\frac{2\pi x}{L}\right)} \sin \theta$			
(b) Vertical	$\zeta = \frac{H}{2} \left(1 + \frac{z}{d} \right) \cos \theta$	$\zeta = \frac{H}{2} \frac{\sinh[2\pi(z+d)/L]}{\sinh(2\pi d/L)} \cos \theta$	$\zeta = \frac{H}{2} e^{\left(\frac{2\pi z}{L}\right)} \cos \theta$			
8. Subsurface	p - ρg(η-z)	$p = \rho g \eta \frac{\cosh[2\pi(z+d)/L]}{\cosh[2\pi(z+d)/L]} - \rho g$	Introduct			

 $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} - \rho I$ $p - \rho g \eta = \frac{\cosh[2\pi(z+d)/L]}{$

pressure

				T	able C	-1.	Conti	nued.					
d/L _o	d/L	2# d/L		SINH 2#d/L	COSH 27 d/L	Н/Н;	К	4 ma/2	SINH LTd/L	COSH LAT d/L	n	c _c /c _o	И
.006000 .006100 .006200 .006300	.03110 .03136 .03162 .03188 .03213	.1954 .1970 .1987 .2003 .2019	.1929 .1945 .1961 .1976 .1992	.1967 .1983 .2000 .2016 .2033	1.0192 1.0195 1.0198 1.0201 1.0205	1.620 1.614 1.607 1.601 1.595	.9812 .9809 .9806 .9803 .9799	.3908 .3941 .3973 .4006 .4038	. 4008 . 4044 . 4079 . 4114 . 4148	1.077 1.079 1.080 1.081 1.083	.9875 .9873 .9871 .9869 .9867	.1905 .1920 .1935 .1950	133 130 128 126 124
.006500 .006600 .006700 .006800 .006900	.03238 .03264 .03289 .03313 .03338	.2035 .2051 .2066 .2082 .2097	.2007 .2022 .2037 .2052 .2067	.2049 .2065 .2081 .2097 .2113	1.0208 1.0211 1.0214 1.0217 1.0221	1.589 1.583 1.578 1.572 1.567	.9796 .9793 .9790 .9787 .9784	.4070 .4101 .4133 .4164 .4195	.4183 .4217 .4251 .4285 .4319	1.084 1.085 1.087 1.088 1.089	.9865 .9863 .9860 .9858 .9856	.1980 .1994 .2009 .2023 .2037	123 121 119 117 116
.007000 .007100 .007200 .007300	.03362 .03387 .03411 .03435 .03459	.2113 .2128 .2143 .2158 .2173	.2082 .2096 .2111 .2125 .2139	.2128 .2144 .2160 .2175 .2190	1.0224 1.0227 1.0231 1.0234 1.0237	1.561 1.556 1.551 1.546 1.541	.9781 .9778 .9774 .9771 .9768	.4225 .4256 .4286 .4316 .4346	. 4352 . 4386 . 4419 . 4452 . 4484	1.091 1.092 1.093 1.095 1.096	.9854 .9852 .9850 .9848 .9846	.2051 .2065 .2079 .2093 .2106	114 112 111 109 108
.007500 .007600 .007700 .007800	.03482 .03506 .03529 .03552 .03576	.2188 .2203 .2218 .2232 .2247	.2154 .2168 .2182 .2196 .2209	.2205 .2221 .2236 .2251 .2265	1.0240 1.0244 1.0247 1.0250 1.0253	1.536 1.531 1.526 1.521 1.517	.9765 .9762 .9759 .9756 .9753	.4376 .4406 .4435 .4464 .4493	.4517 .4549 .4582 .4614 .4646	1.097 1.099 1.100 1.101 1.103	.9844 .9842 .9840 .9838 .9836	.2120 .2134 .2147 .2160 .2173	106 105 104 102 101
.008000 .008100 .008200 .008300	.03598 .03621 .03644 .03666	.2261 .2275 .2290 .2304 .2318	.2223 .2237 .2250 .2264 .2277	.2280 .2295 .2310 .2324 .2338	1.0257 1.0260 1.0263 1.0266 1.0270	1.512 1.508 1.503 1.499 1.495	.9750 .9747 .9744 .9741	.4522 .4551 .4579 .4607 .4636	.4678 .4709 .4741 .4772 .4803	1.104 1.105 1.107 1.108 1.109	.9834 .9832 .9830 .9827 .9825	.2186 .2199 .2212 .2225 .2237	100 98.6 97.5 96.3 95.2
.008500 .008600 .008700 .008800 .008900	.03711 .03733 .03755 .03777 .03799	.2332 .2346 .2360 .2373 .2387	.2290 .2303 .2317 .2330 .2343	.2353 .2367 .2381 .2396 .2410	1.0273 1.0276 1.0280 1.0283 1.0286	1.491 1.487 1.482 1.478 1.474	.9734 .9731 .9728 .9725 .9722	.4664 .4691 .4719 .47147	.4834 .4865 .4896 .4927 .4957	1.111 1.112 1.113 1.115 1.116	.9823 .9821 .9819 .9817 .9815	.2250 .2262 .2275 .2287 .2300	94.1 93.0 91.9 90.9 89.9
.009000 .009100 .009200 .009300 .009400	.03821 .03842 .03864 .03885 .03906	.2401 .2414 .2428 .2441 .2455	.2356 .2368 .2381 .2394 .2407	.2424 .2438 .2452 .2465 .2479	1.0290 1.0293 1.0296 1.0299 1.0303	1.471 1.467 1.463 1.459 1.456	.9718 .9715 .9712 .9709 .9706	.4801 .4828 .4855 .4882 .4909	.4988 .5018 .5049 .5079 .5109	1.118 1.119 1.120 1.122 1.123	.9813 .9811 .9809 .9807 .9805	.2312 .2324 .2336 .2348 .2360	88.9 88.0 87.1 86.1 85.2
.009500 .009600 .009700 .009800 .009900	.03928 .03949 .03970 .03990 .04011	.2468 .2481 .2494 .2507 .2520	.2419 .2431 .2443 .2456 .2468	.2507	1.0306 1.0309 1.0313 1.0316 1.0319	1.452 1.448 1.445 1.442 1.438	.9703 .9700 .9697 .9694	.4936 .4962 .4988 .5014	.5138 .5168 .5198 .5227 .5257	1.124 1.126 1.127 1.128 1.130	.9803 .9801 .9799 .9797	.2371 .2383 .2394 .2406 .2417	84.3 83.5 82.7 81.8
.01000 .01100 .01200 .01300 .01400	.04032 .04233 .04426 .04612 .04791	.2533 .2660 .2781 .2898 .3010	.2480 .2598 .2711 .2820 .2924	.2560 .2691 .2817 .2938 .3056	1.0322 1.0356 1.0389 1.0423 1.0456	1.435 1.403 1.375 1.350 1.327	.9688 .9656 .9625 .9594 .9564	.5066 .5319 .5562 .5795 .6020	.5286 .5574 .5853 .6125	1.131 1.145 1.159 1.173 1.187	.9792 .9772 .9751 .9731	.2429 .2539 .2643 .2743 .2838	80.2 73.1 67.1 62.1 57.8
.01500 .01600 .01700 .01800	.04964 .05132 .05296 .05455	.3119 .3225 .3328 .3428 .3525	.3022 .3117 .3209 .3298 .3386	.3170 .3281 .3389 .3495 .3599	1.0490 1.0524 1.0559 1.0593 1.0628	1.307 1.288 1.271 1.255 1.240	.9533 .9502 .9471 .9440	.6238 .6450 .6655 .6856 .7051	.6651 .6906 .7158 .7405	1.201 1.215 1.230 1.244 1.259	.9690 .9670 .9649 .9629 .9609	.2928 .301/ .3096 .3176 .3253	54.0 50.8 47.9 45.1
.02000 .02100 .02200 .02300	.05763 .05912 .06057 .06200 .06340	.3621 .3714 .3806 .3896 .3984	.3470 .3552 .3632 .3710 .3786	.3701 .3800 .3898 .3995 .4090	1.0663 1.0698 1.0733 1.0768 1.0804	1.226 1.213 1.201 1.189 1.178	.9378 .9348 .9317 .9287 .9256	.7242 .7429 .7612 .7791 .7967	.7891 .8131 .8368 .8603 .8837	1.274 1.289 1.304 1.319 1.335	.9588 .9568 .9548 .9528	•3327 •3399 •3468 •3535 •3600	39.1 37.1 35.9 34.1
.02500 .02600 .02700 .02800 .02900	.06478 .06613 .06747 .06878 .07007	.4070 .4155 .4239 .4322 .4403	.3860 .3932 .4002 .4071 .4138	.4184 .4276 .4367 .4457 .4546	1.0840 1.0876 1.0912 1.0949 1.0985	1.168 1.159 1.150 1.141 1.133	.9225 .9195 .9164 .9133 .9103	.8140 .8310 .8478 .8643 .8805	.9069 .9310 .9530 .9760 .9988	1.350 1.366 1.381 1.397 1.413	.9488 .9468 .9448 .9428 .9408	.3662 .3722 .3781 .3838 .3893	33.1 31.9 30.8 29.8 28.8

GUIDE FOR USE OF TABLES C1 AND C2

d/Lo = ratio of depth of water at any specific location to the wavelength in deep water

d/L = ratio of the depth of water at any specific location to the wavelength at that same location

 $H/H_o' = K_s = ratio of the wave height in shallow water to what its wave height would have been in deep water if unaffected by refraction = shoaling coefficient = <math>\sqrt{\frac{1}{2}(1/n)} (1/(C/C_o)]$

K = a pressure response factor used in connection with underwater pressure instruments, where

$$= \frac{H'}{H} = \frac{P}{P_0} = \frac{\cosh \left[2\pi d/L (1 + z/d)\right]}{\cosh \left(2\pi d/L\right)} \text{ or } \frac{\cosh \left[2\pi (d + z)/L\right]}{\cosh \left(2\pi d/L\right)}$$

where P is the pressure fluctuation at a depth z measured negatively below still water, P_o is the surface pressure fluctuation, d is the depth of water from SWL to the ocean bottom, L is the wavelength in any particular depth of water, and H is the corresponding variation of head at a depth z. The values of K shown in the tables are for the instrument placed on the bottom using the equation when

$$z = -d = 1$$
 values tabulated in Column 8 cosh $(2\pi d/L)$

Source: Coastal Engineering Manual, USACE

GUIDE FOR USE OF TABLES C1 AND C2 (ccnt.)

n = the fraction of wave energy that travels forward with the waveform: i.e. with the wave velocity C rather than the group velocity C_{α}

=
$$[\frac{1}{2} \{1 + (4\pi d/L)/(\sinh(4\pi d/L))\}]$$
 = C_g/C

n is also the ratio of group velocity C_a to wave velocity C

 C_g/C_o = ratio of group velocity to deepwater wave velocity where $C_g/C_o = C_g/C \times C/C_o = n \tanh (2\pi d/L)$

M = an energy coefficient defined as $\frac{\pi^2}{2 \tanh^2 (2\pi d/L)}$

Source: Coastal Engineering Manual, USACE

EXAMPLE PROBLEM II-1-1

FIND:

The wave celerities C and lengths L corresponding to depths d = 200 meters (656 ft) and d = 3 m (9.8 ft).

GIVEN:

A wave with a period T = 10 seconds is propagated shoreward over a uniformly sloping shelf from a depth d = 200 m (656 ft) to a depth d = 3 m (9.8 ft).

SOLUTION:

Using Equation II-1-15,

$$L_0 = \frac{gT^2}{2\pi} = \frac{9.8 T^2}{2\pi} = 1.56 T^2 m (5.12 T^2 ft)$$

$$L_0 = 1.56T^2 = 1.56(10)^2 = 156 m (512 ft)$$

For d = 200 m

$$\frac{d}{L_0} = \frac{200}{156} = 1.2821$$

Note that for values of

$$\frac{d}{L_0} > 1.0$$

$$\frac{d}{L_0} - \frac{d}{L}$$

therefore.

$$L$$
 = L_0 = 156 m (512 ft) (deepwater wave, since $\frac{d}{L} > \frac{1}{2}$)

which is in agreement with Figure II-1-5.

By Equation II-1-7

$$C = \frac{L}{T} = \frac{156}{T}$$

$$C = \frac{156}{10} = 15.6 \text{ m/s} (51.2 \text{ ft/s})$$

For d = 3 m

$$\frac{d}{L_0} = \frac{3}{156} = 0.0192$$

Source: Coastal Engineering Manual, USACE

Example Problem II-1-1 (Continued)

Example Problem II-1-1 (Concluded)

By trial-and-error solution (Equation II-1-21) with d/L_o it is found that

 $\frac{d}{L} = 0.05641$

Source: Coastal Engineering Manual, USACE

hence

$$L = \frac{3}{0.05641} = 53.2 \ m \ (174 \ ft) \left(\text{transitional depth, since} \frac{1}{25} < \frac{d}{L} < \frac{1}{2} \right)$$

$$C = \frac{L}{T} = \frac{53.2}{10} = 5.32 \text{ m/s} (17.4 \text{ ft/s})$$

An approximate value of L can also be found by using Equation II-1-11

$$L = \frac{gT^2}{2\pi} \sqrt{\tanh\left(\frac{4\pi^2}{T^2}\frac{d}{g}\right)}$$

which can be written in terms of L. as

$$L \sim L_0 \sqrt{\tanh\left(\frac{2\pi d}{L_0}\right)}$$

therefore

$$L \sim 156 \sqrt{\tanh\left(\frac{2\pi(3)}{156}\right)}$$

$$L \sim 156 \sqrt{0.1202} = 54.1 \text{ m } (177.5 \text{ ft})$$

which compares with L = 53.3 m obtained using Equations II-1-8, II-1-9, or II-1-21. The error in this case is 1.5 percent. Note that Figure II-1-5 or Plate C-1 (SPM 1984) could also have been used to determine d/L.

(cc)

