

Process Chem and Pharmaceutical Engineering 1

Vapor-liquid Separation Part 2

Wan Nurul Huda binti Wan Zainal Faculty of Engineering Technology wannurulhuda@ump.edu.my

Vapour-liquid Separation Part 2 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-6

Communitising Technology

Chapter Description

- Aims
 - Solve problems related to extraction process by applying the formula relevant to specific operations
- Expected Outcomes
 - Describe the vapor-liquid separation in single condensable component and multicomponent systems
 - Apply Raoult's law and Henry's Law in problem solving
 - Comprehend the distillation process
- References
 - Principles of Mass Transfer and Separation Processes, Binay K.
 Dutta, PHI Learning Private Limited, 2009

Henry's Law

Assumptions

- For pressure low it is low that it can be assumed as ideal gas
- For species present as a very dilute solution in liquid phase

Henry's Law

$$y_i P = x_i H_i \ (i = 1, 2, ..., N)$$

Where:

- x_i = L-phase mole fraction
- y_i = V-phase mole fraction
- H_i = Henry's constant
- P = total pressure

Henry's constant for gases dissolved in water at 25 °C

Gas	H/bar
Acetylene	1350
Air	72950
Carbon dioxide	1670
Carbon monoxide	54600
Ethane	30600
Ethylene	11550
Helium	126600
Hydrogen	71600
Hydrogen sulphide	550

Azeotrope

• When x₁=y₁, the dew point and bubble point curves are tangent to the same horizontal line.

 A boiling L of this composition produce a vapour exactly the same composition; L does not change in composition as it evaporates.

• Relative volatility:

$$\alpha_{12} \equiv \frac{y_1/x_1}{y_2/x_2}$$

$$(\alpha_{12})_{x1=0} = \frac{P_1^{sat} \exp A}{P_2^{sat}}$$
$$(\alpha_{12})_{x1=1} = \frac{P_1^{sat}}{P_2^{sat} \exp A}$$

If one limit is >1 and the other limit is <1; azeotrope exists

When given a mixture of composition at certain T or P

Bubble point

- Insignificant L
- The given mole fraction is y_i
- Composition of dew is $x_i = y_i/K_i$

Dew point

- System is almost condensed
- The given mole fraction is x_i
- Composition of bubble is $y_i = K_i x_i$

Flash Calculation

• The most important application of VLE.

 Originates from a fact that a liquid at pressure equal to or greater that its bubble point pressure "flashes" or evaporates when the pressure is reduced, producing a two-phase system of vapour and liquid in equilibrium.

Liquid at P > P_{bubble} partially evaporates when P is reduced, producing 2-phase system of V and L in equilibrium. Find T,P and z.

Flash Vaporization of a Binary Mixture

A binary mixture consists of component A and B. In the flowrate, the composition and enthalpy of the feed, the condensed top product (or distillate) and the bottom liquid product are denoted as (F, Z_f , H_f), (D, x_D , H_D) and (W, x_W , H_W) respectively and Q is the rate of supply of heat to the heat exchanger. The material and energy balances as the following:

- F = D + W
- $F_{zF} = D_{xD} + W_{xW}$
- $(D+W)_{zf} = D_{xD} + W_{xW}$
- $FH_f + Q = DH_D + WH_W$

$$-\frac{W}{D} = \frac{x_D - z_F}{x_W - z_F} = \frac{H_D - (H_F + \frac{Q}{F})}{H_W - (H_F + \frac{Q}{F})}$$
Vapour-lie
By Wan N
bttp://oc

Binary Flash Distillation

A mixture of 40% mol% benzene and 60 mol% toluene is being flash-distilled at a rate of 10 kmol/h at 1 atm total pressure. The liquid product should not contain more than 30 mol% benzene. Calculate the amounts and the compositions of the top and the bottom products. The relative volatility of benzene in the mixture is 2.5.

F + D = W

Given: F = 10, $z_F = 0.4$ Benzene balance: $F_{zF} = D_{xD} + W_{xW}$ Given $x_W = 0.3$ (10)(0.4) = $D_{xD} + W(0.3)$ $\frac{x_D/(1 - x_D)}{x_W/(1 - x_W)}$ D = 4.61, W = 5.39 mol/h, $x_D = 0.517$

Conclusion of The Chapter

This chapter discussed about bubble and dew point, Raoult's law and Henry's law, azeotrope and flash calculation

wannurulhuda@ump.edu.my

Reference Principles of Mass Transfer and Separation Processes, Binay K. Dutta, PHI Learning Private Limited, 2009

Vapour-liquid Separation Part 2 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-6

Communitising Technology