

Process Chem and Pharmaceutical Engineering 1

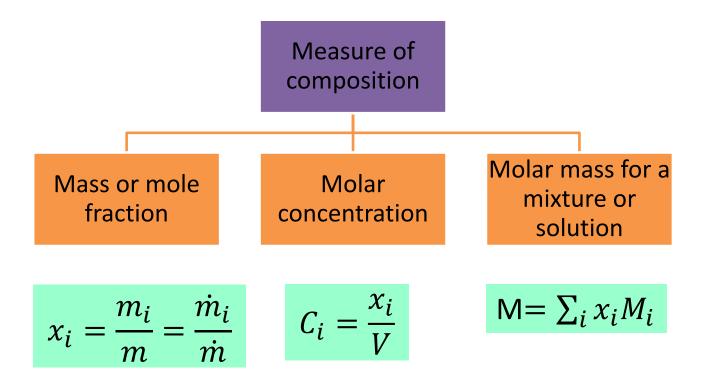
Vapour-liquid Separation Part 1

Wan Nurul Huda binti Wan Zainal Faculty of Engineering Technology wannurulhuda@ump.edu.my

Vapour-liquid Separation Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-6

Chapter Description

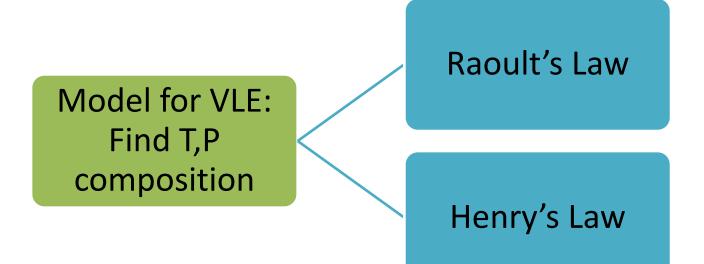
- Aims
 - Solve problems related to extraction process by applying the formula relevant to specific operations
- Expected Outcomes
 - Describe the vapour-liquid separation in single condensable component and multicomponent systems
 - Apply Raoult's law and Henry's Law in problem solving
 - Comprehend the distillation process
- References
 - Principles of Mass Transfer and Separation Processes, Binay K.
 Dutta, PHI Learning Private Limited, 2009


The Nature of Equilibrium

Equilibrium: a static condition, whereby no changes occur in the macroscopic properties of a system with time

Vapour-liquid Separation Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-6

Measure of Composition


Bubble Point and Dew Point

- The **bubble point** is the temperature (at a given pressure) where the first bubble of vapour is formed when heating a liquid consisting of two or more components.
- **Dew point** is the atmospheric temperature (varying according to pressure and humidity) below which water droplets begin to condense and dew can form.

Source: Principles of Mass Transfer and Separation Processes

Vapour-liquid Separation Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-6

Raoult's Law

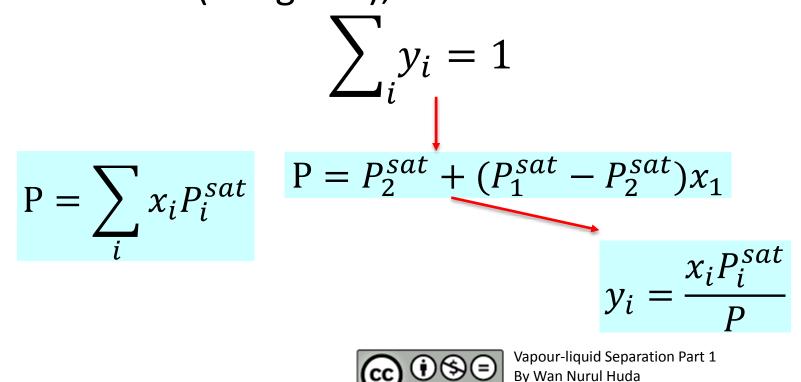
Assumptions

- V phase is an ideal gas applicable for low to moderate pressure
- L phase is an ideal solution valid only if the species are chemically similar (size, same chemical nature, e.g. isomers such as ortho-, meta- & para-xylene)

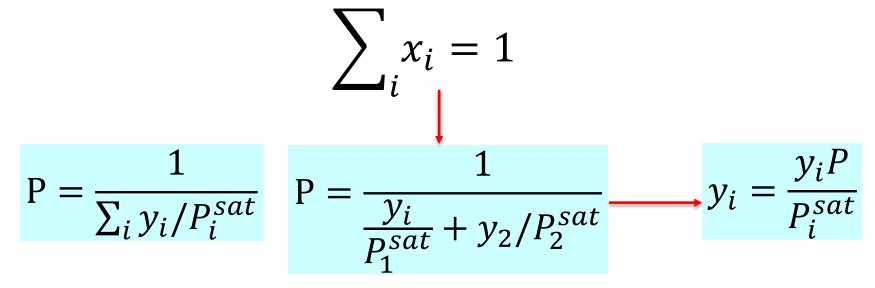
$$y_i P = x_i P_i^{sat} (i = 1, 2, ..., N)$$

Where:

- x_i = L-phase mole fraction
- y_i = V-phase mole fraction
- P_i^{sat} = vapour pressure of pure species
- P = total pressure


Dew Point & Bubble Point Calculations with Raoult's Law

	FIND GIVEN
Bubble P	Calculate {y _i } and P, given {x _i } and T
Dew P	Calculate {x _i } and P, given {y _i } and T
Bubble T	Calculate {y _i } and T, given {x _i } and P
Dew T	Calculate {x _i } and T, given {y _i } and P



For binary systems to solve for bubble point calculation (T is given);

Raoult's law equation can be solved for xi to solve for dew point calculation (T is given)

Example 1

Binary system acetonitrile(1)/nitromethane(2) conforms closely to Raoult's law. Vapour pressure for the pure species are given by the following Antoine equations:

 $\ln \frac{P_1^{sat}}{kPa} = 14.2724 - \frac{2945.47}{t/^oC + 244} \qquad \ln \frac{P_2^{sat}}{kPa} = 14.2043 - \frac{2972.64}{t/^oC + 209}$

a. Prepare a table showing P vs x_1 and P vs y_1 at temperature 75 °C (x1=0.6)

a. Bubble P calculations are required. Since this is a binary system

$$P = P_2^{sat} + (P_1^{sat} - P_2^{sat})x_1$$

At 75 oC, the saturated pressure is given by Antoine equation:

 $P_1^{sat} = 154.31$ $P_2^{sat} = 41.98$

Substitute both values in (A) to find P:

$$P = 41.98 + (154.31 - 41.98)(0.6)$$

P = 109.38 kPa

The corresponding value of y1 is found from:

aat

$y_i P =$		$y_i = \frac{x_i P_i^{sat}}{P} = \frac{Q_i}{P}$	$\frac{0.6)(154.31)}{109.38} =$	0.8464
	x _i	y _i	P/kPa	
	0.0	0.0000	41.98	
	0.2			
	0.4			
	0.6	0.8464	109.38	
	0.8	0.9363	131.84	
	1.0	1.0000	154.32	

Conclusion of The Chapter

- This chapter discussed about bubble and dew point
 - Raoult's law and Henry's law
 - Azeotrope
 - Flash calculation

wannurulhuda@ump.edu.my

Reference Principles of Mass Transfer and Separation Processes, Binay K. Dutta, PHI Learning Private Limited, 2009

Vapour-liquid Separation Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-6