



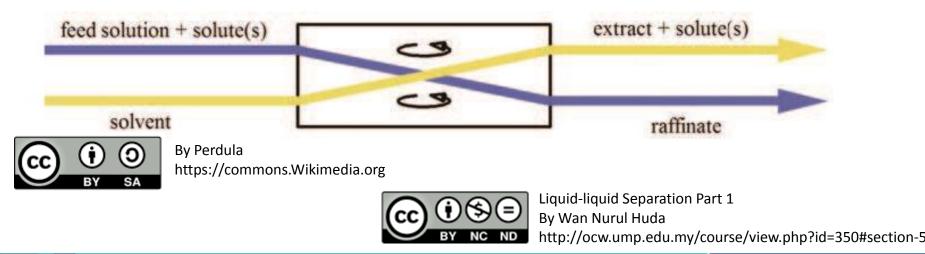
# Process Chem and Pharmaceutical Engineering 1

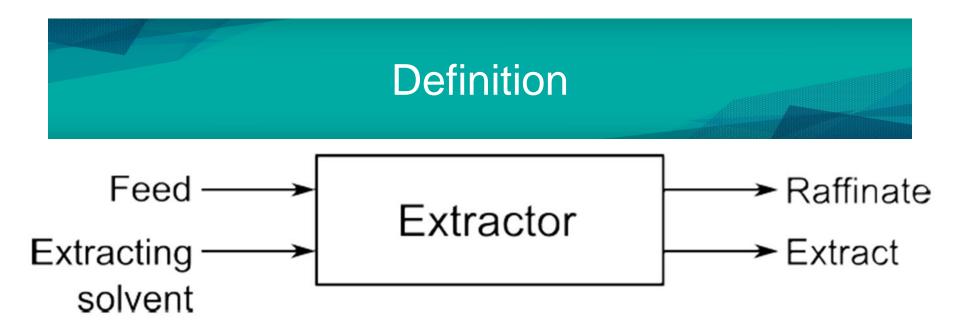
# **Liquid-liquid Separation Part 1**

Wan Nurul Huda binti Wan Zainal Faculty of Engineering Technology wannurulhuda@ump.edu.my



Liquid-liquid Separation Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-5


#### **Chapter Description**


- Aims
  - Solve problems related to extraction process by applying the formula relevant to specific unit operations
- Expected Outcomes
  - Describe the concept of equilibrium between two liquids phases
- References
  - Unit Operations of Chemical Engineering, Warren L. McCabe, Julian C. Smith, Peter Harriott



#### Introduction to Extraction

- Liquid-liquid extraction (also known as solvent extraction) involves the separation of the constituents (solutes) of a liquid solution by contact with another insoluble liquid.
- Solutes are separated based on their different liquids.
- Separation is achieved when the substances constituting the original solution is transferred from the original solution to the other liquid solution.





- Solute: species we aim to recover (A) from the feed
- Feed or feed solvent: one of the liquids in the system (carrier)
- Solvent: MSA (by convection: the added liquid)
- Extract: solvent (not solute) mostly present in this layer
- yE,A = concentration of A, the solute in extract
- Raffinate: residual solute in this layer = xR,A



# Solvent Extraction (Partition Coefficient)

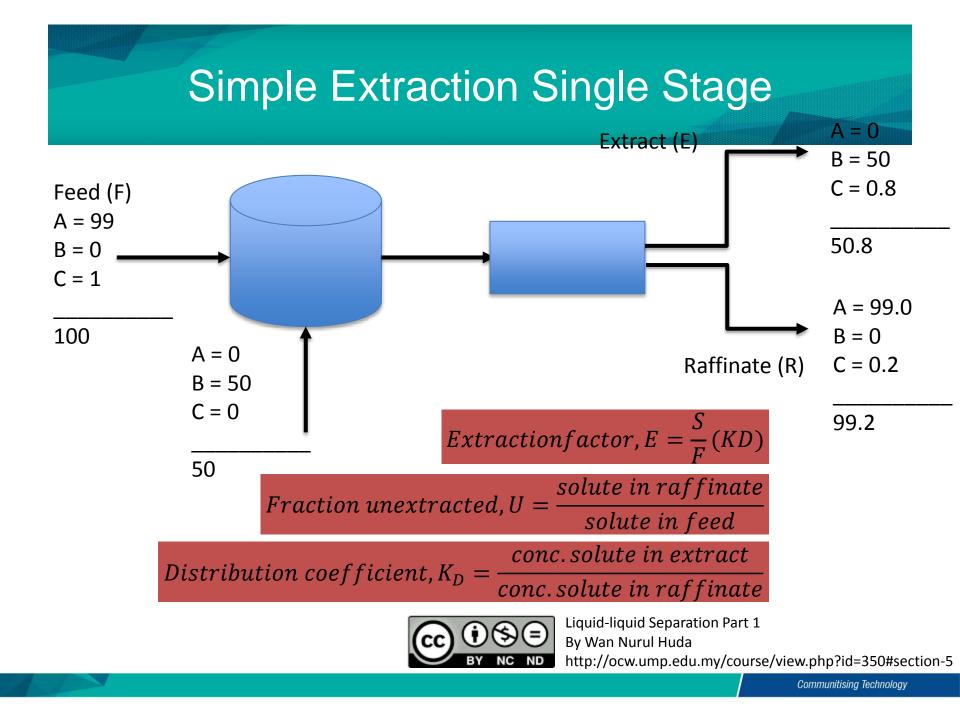
 The distribution of solute between two phases is expressed quantitatively by distribution or partition coefficient, K<sub>D</sub>.

$$K_D = \frac{solute\ concentration\ in\ extract\ phase}{solute\ concentration\ in\ raffinate\ phase}$$

• Higher value of K<sub>D</sub> indicates higher extraction efficiency






- The simplest liquid-liquid extraction involves only a ternary (i.e. 3 components) system.
- The solution which is to be extracted is called the feed, and the liquid with which the feed is contacted is the solvent.
- The feed can be considered as comprising the solute A and the carrier liquid C. Solvent S is a pure liquid.
- During contact, mass transfer of A from the feed to the solvent S occurs, with little transfer of C to S.
- The solvent (with the solute) is then permitted to separate from the carrier liquid.





- The solvent-rich product of the operation is called the extract, and the residual liquid from which solutes has been removed is the raffinate
- In some operations, the solutes are the desired product, hence the extract stream is the desirable stream.
- In other applications, the solutes may be the contaminants that need to be removed, and in this instance the raffinate is the desirable product stream.







Where LLE is normally used?

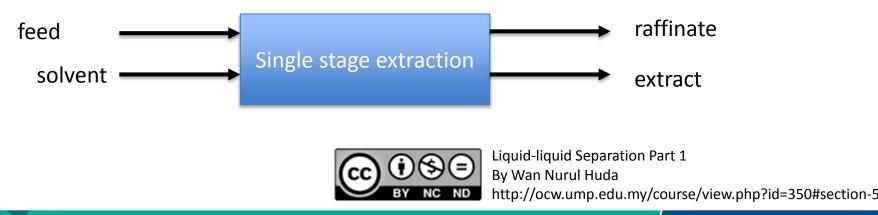
- Bioseparations
- Nuclear (uranium recovery)
- Mining: nickel/cobalt
- Perfumes, fragrances, and essential oils
- Fine and specialty chemicals
- Oil sands: extract bitumen away from water Why LLE is used?
- Temperature sensitive products
- High purity requirements
- High-boiling point species in low quantity
- Need to separate by species type(rather than relative volatility)
- Close-boiling points, but high solubility difference
- Azeotrope forming mixtures



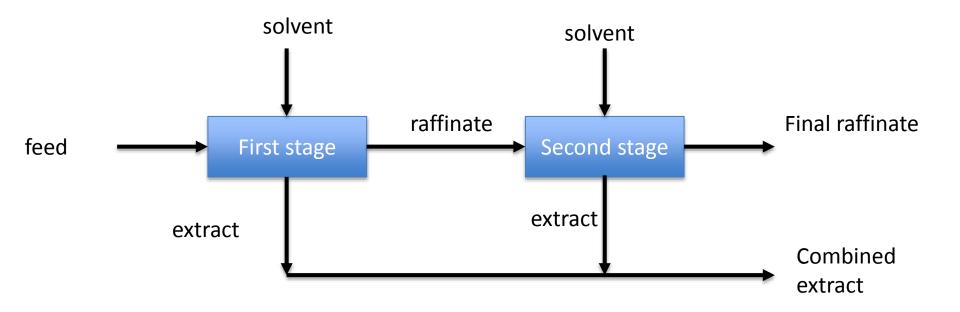
| Extraction process                                                                         | feed                                                                          | solvent                                                                                        |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Separation of aromatic<br>hydrocarbons from petroleum<br>fractions                         | Petroleum fractions containing aromatics                                      | Tetraethylene glycol- water                                                                    |
| Extraction of phenolics from coal tar and liquors                                          | Light liquor containing phenolics (obtained in a coal carbonization plant)    | Isobutyl acetate                                                                               |
| Extraction of phenol from aqueous wastes                                                   | Aqueous waste streams, coal<br>carbonization plants. Phenolic<br>resin plants | Butyl acetate, di- isopropyl<br>ether, MIBK                                                    |
| Extraction of citral (a<br>flavouring substance used in<br>food and some other industries) | Lemon grass and orange<br>oil                                                 | An alcohol and a lower<br>hydrocarbon<br>A polar solvent like<br>acetone or a lower<br>alcohol |
| Removal of H <sub>2</sub> S                                                                | Liquified natural gas<br>(LNG                                                 | Monoethanolamine (MEA),<br>Methanol- diethanolamine<br>(MDEA)                                  |

- Caprolactum is produced and used in large quantites for the manufacture of nylon-6, a bulk polymer. It is synthesized from cyclohexane (cyclohaxane
   Cyclohexanol I cyclohexanone Icyclohexanone oxime I caprolactum)
- The last step of the process involves reaction of the oxime withsuplhuric acid where caprolactum and ammonium sulphate are formed.
- The aqueous reaction mixture separates into an organic-rich phase(lactum oil contains 65-70%) and a water-rich phase having ammonium suplhate and 2-3% caprolactum.
- The two phase are fed at appropriate locations of a rotating disk contactor. Toluene and, benzene and trichloroethylene are good solvents(the last two are not used any more)
- Caprolactum goes to the extract and ammonium sulphate remains in the raffinate. The two streams are further treated to get caprolactum in a pure form and to recover the solvent and ammonium sulphate



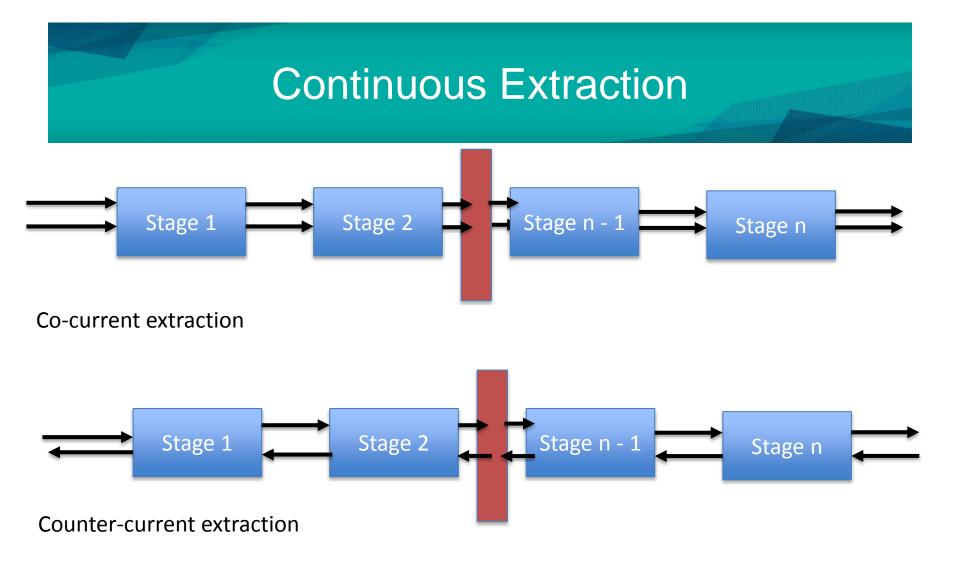

### **Operating Modes of Extraction**

- Batch or continuous extractions
- Batch extraction single stage or multiple stage
- Continuous extraction co-current or countercurrent extraction
- Multiple stage is necessary to achieve high bioproduct recovery in extraction




#### **Batch Extraction**

- The aqueous feed is mixed with the organic solvent
- After equilibrium, the extract phase containing the desired solute is separated out for further processing.
- A schematic representation of a single batch operation.




# **Batch Extraction in Multiple Stage**





Liquid-liquid Separation Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-5



Counter-current flow is preferable because the solute concentration gradient 9driving force) is larger



# Extraction of dilute solution

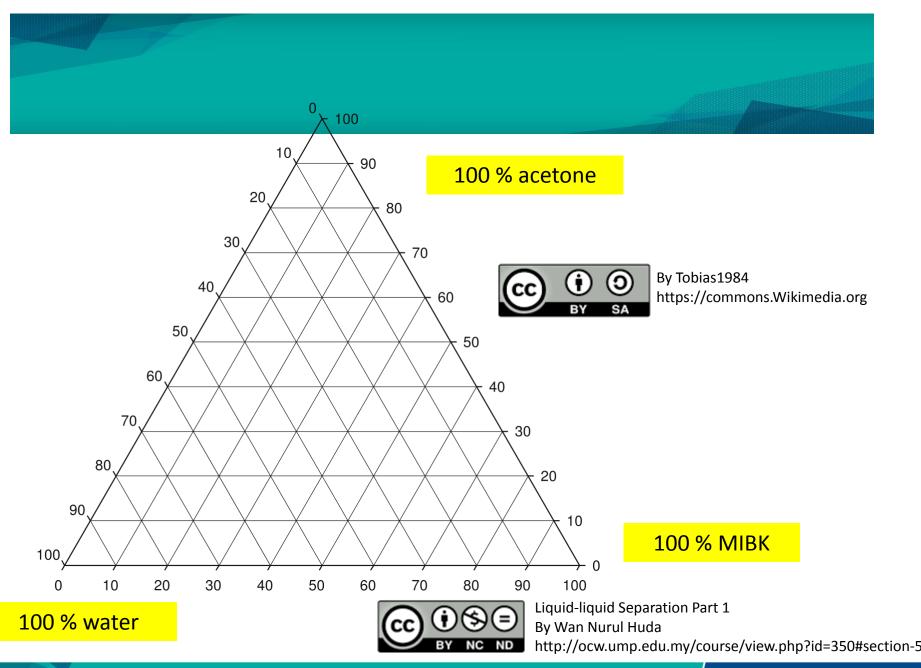
• Extraction factor:

• 
$$E = \frac{K_D V}{L}$$

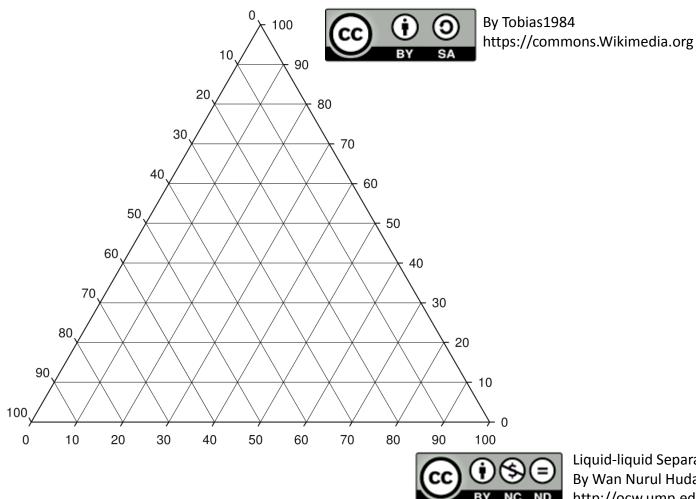
- Where
- E = extraction factor
- K<sub>D</sub> = distribution coefficient
- V = volume of solvent
- L = volume of aqueous



## **Extraction of Dilute Solution**


- For a single-stage extraction with pure solvent:
- - the fraction of solute remaining is:
- $\frac{1}{1+E}$
- The fraction recovered is:
- $\frac{E}{1+E}$




#### **Extraction of Concentrated Solution**

- Equilibrium relationship are more complicated
   3 or more components present in each
  phase
- Equilibrium data are often presented on a triangular diagram





#### Single Phase Liquid



Solution A 70% acetone 10% water 20% MIBK

Solution B 33% acetone 33% water 33% MIBK

Liquid-liquid Separation Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-5

# **Conclusion of The Chapter**

 This chapter discussed about solvent extraction, operating modes of extraction, batch and continuous extraction, extraction of dilute and concentrated solution, choice of solvent, and extraction equipment





#### Unit Operations of Chemical Engineering, Warren L. McCabe, Julian C. Smith, Peter Harriott



Liquid-liquid Separation Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-5