Process Chem and Pharmaceutical Engineering 1

Chemical Reaction Part 1

Wan Nurul Huda binti Wan Zainal Faculty of Engineering Technology
 wannurulhuda@ump.edu.my

Chemical Reaction Part 1
By Wan Nurul Huda
http://ocw.ump.edu.my/course/view.php?id=350\#section-3

Chapter Description

- Aims
- Define reaction rate and the factors affecting the rate
- Expected Outcomes
- Define reaction rate and the factors affecting the rate
- Construct mass and mole balances for different types of process corresponding to the stoichiometry and conversion
- Factors affecting reaction rate
- References
- Chemistry, A molecular Approach, Nivaldo J. Tro, Pearson, 4 ${ }^{\text {th }}$ Edition, 2017

Chemical Reaction Part 1
By Wan Nurul Huda
http://ocw.ump.edu.my/course/view.php?id=350\#section-3

Chemical Kinetics

- Chemical reaction: speeds or rates
- Kinetic = movement/change
- Reaction rate: Change of concentration of a reactant or a product with time (i.e, M / s)
- $a A+b B \rightarrow c C+d D$
- The reactant is consumed while product is formed

$$
\text { Rate }=-\frac{1}{a} \cdot \frac{\Delta[A]}{\Delta t}=-\frac{1}{b} \cdot \frac{\Delta[B]}{\Delta t}=\frac{1}{c} \cdot \frac{\Delta[C]}{\Delta t}=\frac{1}{d} \cdot \frac{\Delta[D]}{\Delta t}
$$

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$

Reaction rate:

$$
\begin{aligned}
& \text { Rate }=\frac{-\Delta\left[H_{2}\right]}{\Delta t} \\
& \text { Rate }=\frac{-\Delta\left[I_{2}\right]}{\Delta t} \\
& \text { Rate }=\frac{1}{2} \frac{\Delta[H I]}{\Delta t}
\end{aligned}
$$

Reactant and Product Concentration as a Function of Time

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
The concentration of HI increases at twice the rate the concentration of H_{2} or I_{2} decreases.

Time (s)

Exercise 1

Calculate the change of H 2 concentration for each interval $\Delta\left[\mathrm{H}_{2}\right]$ and rate for each interval $\Delta\left[\mathrm{H}_{2}\right] / \Delta \mathrm{t}$.

Exercise 1

Calculate the change of H 2 concentration for each interval $\Delta\left[\mathrm{H}_{2}\right]$ and rate for each interval $\Delta\left[\mathrm{H}_{2}\right] / \Delta \mathrm{t}$.

Time (s)	$\left[\mathrm{H}_{2}\right](\mathrm{M})$	$\Delta\left[\mathrm{H}_{2}\right](\mathrm{M})$	$\Delta \mathrm{t}(\mathrm{s})$	$\begin{gathered} \text { Rate }=- \\ \Delta\left[\mathrm{H}_{2}\right] / \Delta \mathrm{t}(\mathrm{M} / \mathrm{s}) \end{gathered}$
0.00	1.00			
10.00	0.819	-0.181	10.00	0.0181
20.00	0.670	-0.149	10.00	0.0149
30.00	0.549	-0.121	10.00	0.0121
40.00	0.449	-0.100	10.00	0.0100
50.00	0.368	-0.081	10.00	0.0081
60.00	0.310	-0.067	10.00	0.0067
70.00	0.247	-0.054	10.00	0.0054
80.00	0.202	-0.045	10.00	0.0045
90.00	0.165	-0.037	10.00	0.0037
100.00	0.135	(cc) ©	By Wan N1040円uda by	0.0030

Rate of Reaction

The rate of a chemical reaction is a measure of how fast the reaction occurs.

Fast rate of chemical reaction:

 a large fraction of molecules react to form products in a given period of time.
Slow rate of chemical reaction:

 only a relatively small fraction of molecules react to form products in a given period of time.
The Rate Law: The Effect of Concentration on Reaction Rate

The rate of a reaction often depends on the concentration of reactants.

$A \rightarrow$ products

If the reverse reaction is negligibly slow, the relationship between the rate of the reaction and the concentration of the reactant (called the rate law):

$$
\text { Rate }=k[A]^{n}
$$

Where
k = constant of proportionality called the rate constant
N = reaction order.
The value of n determines how the rate depends on the concentration of the reactant

Exercise 2

Consider the reaction between nitrogen dioxide and carbon monoxide:

$$
\mathrm{NO}_{2}(g)+\mathrm{CO}(g) \rightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g)
$$

The initial rate of the reaction is measured at several different concentrations of the reactants, and tabulated in Table 1.

From the data, determine:
a) The rate law for the reaction
b) The rate constant (k) for the reaction

$\left[\mathbf{N O}_{2}\right](\mathbf{M})$	$[\mathbf{C O}](\mathbf{M})$	Initial Rate (M/s)
0.10	0.10	0.0021
0.20	0.10	0.0082
0.20	0.20	0.0083
0.40	0.10	0.033

- The rate laws show the relationship between the rate of a reaction and the concentration of a reactant.
- How to check the relationship between the concentration of a reactant and time?

The Integrated Rate Law

The integrated rate law for a chemical reaction is a relationship between the concentrations of the reactants and time.

First-Order Integrated Rate Law

$$
A \rightarrow \text { product }
$$

- Rate $=k[\mathrm{~A}]=-\Delta[\mathrm{A}] / \Delta \mathrm{t}$
- Rearrange:

$$
\frac{\Delta[A]}{\Delta t}=k[A] \text { - also known as the differential rate law }
$$

- The integrated rate law:
- $\ln [\mathrm{A}]_{\mathrm{t}}=-k t+\ln [\mathrm{A}]_{0}$

$$
\ln \frac{[A]_{t}}{[A]_{0}}=-k t
$$

Where

$[A]_{t} \quad=$ concentration of A at any time t
$k \quad=$ rate constant
$[\mathrm{A}]_{0} \quad=$ initial concentration of A

First-Order Integrated Rate Law

- The integrated rate law has the form of an equation for a straight line.
- $\ln [\mathrm{A}]_{\mathrm{t}}=-k t+\ln [\mathrm{A}]_{0}$
- $\mathrm{y}=\mathrm{mx}+\mathrm{c}$

Chemical Reaction Part 1
By Wan Nurul Huda
http://ocw.ump.edu.my/course/view.php?id=350\#section-3

Second-Order Integrated Rate Law

$A \rightarrow$ product

- Rate $=\mathrm{k}[\mathrm{A}]^{2}=-\Delta[\mathrm{A}] / \Delta \mathrm{t}$
- Rearrange: differential rate law
- $\frac{\Delta[A]}{\Delta t}=k[A]^{2}$
- The second-order integrated rate law:
- $\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}$

Form equation for a straight line

Second-Order Integrated Rate Law

- A plot of the inverse of the reactant concentration vs time yields a straight line.

Chemical Reaction Part 1
By Wan Nurul Huda

Conclusion of The Chapter

This chapter discussed about rate of reaction, rate law, and integrated rate law.

Chemical Reaction Part 1
By Wan Nurul Huda
http://ocw.ump.edu.my/course/view.php?id=350\#section-3

Chemistry, A molecular Approach, Nivaldo J. Tro, Pearson, $4^{\text {th }}$ Edition, 2017

