

Process Chem and Pharmaceutical Engineering 1

Chemical Reaction Part 1

Wan Nurul Huda binti Wan Zainal Faculty of Engineering Technology wannurulhuda@ump.edu.my

Chemical Reaction Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-3

Communitising Technology

Chapter Description

• Aims

- Define reaction rate and the factors affecting the rate

Expected Outcomes

- Define reaction rate and the factors affecting the rate
- Construct mass and mole balances for different types of process corresponding to the stoichiometry and conversion
- Factors affecting reaction rate
- References
 - Chemistry, A molecular Approach, Nivaldo J. Tro, Pearson, 4th Edition, 2017

Chemical Kinetics

- Chemical reaction: speeds or rates
- Kinetic = movement/change
- Reaction rate: Change of concentration of a reactant or a product with time (i.e, M/s)
- $aA + bB \rightarrow cC + dD$
- The reactant is consumed while product is formed

$$Rate = -\frac{1}{a} \cdot \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \cdot \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \cdot \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \cdot \frac{\Delta[D]}{\Delta t}$$

 $H_2(g) + I_2(g) \rightarrow 2HI(g)$

Reaction rate:

Chemical Reaction Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-3

Communitising Technology

Reactant and Product Concentration as a Function of Time

$$H_2(g) + I_2(g) \to 2HI(g)$$

The concentration of HI increases at twice the rate the concentration of H_2 or I_2 decreases.

Exercise 1 Calculate the change of H2 concentration for each interval $\Delta[H_2]$ and rate for each interval $\Delta[H_2]/\Delta t$.

Time (s)	[H ₂] (M)	Δ[H ₂] (M)	Δt(s)	Rate = - $\Delta[H_2]/\Delta t (M/s)$
0.00	1.00			
10.00	0.819			
20.00	0.670			
30.00	0.549			
40.00	0.449			
50.00	0.368			
60.00	0.310			
70.00	0.247			
80.00	0.202			
90.00	0.165		Chomical Poaction Part 1	
100.00	0.135		By Wan Nurul Huda	ourse/view php?id=350#sectic

Exercise 1 Calculate the change of H2 concentration for each interval $\Delta[H_2]$ and rate for each interval $\Delta[H_2]/\Delta t$.

Time (s)	[H ₂] (M)	Δ[H ₂] (M)	Δt(s)	Rate = - $\Delta[H_2]/\Delta t (M/s)$
0.00	1.00			
10.00	0.819	-0.181	10.00	0.0181
20.00	0.670	-0.149	10.00	0.0149
30.00	0.549	-0.121	10.00	0.0121
40.00	0.449	-0.100	10.00	0.0100
50.00	0.368	-0.081	10.00	0.0081
60.00	0.310	-0.067	10.00	0.0067
70.00	0.247	-0.054	10.00	0.0054
80.00	0.202	-0.045	10.00	0.0045
90.00	0.165	-0.037	10.00 Chamical Baastian Part 1	0.0037
100.00	0.135		By Wan Y ()u)() bttp://ocw.ump.odu.my/	0.0030

Rate of Reaction

The **rate** of a chemical reaction is a measure of how fast the reaction occurs.

Fast rate of chemical reaction:

a large fraction of molecules react to form products in a given period of time.

Slow rate of chemical reaction:

only a relatively small fraction of molecules react to form products in a given period of time.

The Rate Law: The Effect of Concentration on Reaction Rate

The rate of a reaction often depends on the concentration of reactants.

$$A \rightarrow products$$

If the reverse reaction is negligibly slow, the relationship between the rate of the reaction and the concentration of the reactant (called the rate law):

Where

- *k* = constant of proportionality called the rate constant
- *N* = reaction order.

The value of *n* determines how the rate depends on the concentration of the reactant

$$n = 0$$
 $n = 1$ $n = 2$ $Rate = k[A]^0 = k$ $Rate = k[A]^1$ $Rate = k[A]^2$ • If $n = 0$, rate is
independent of the
concentration of
reactant.• If $n = 1$, rate is directly
proportional to the
concentration of
reactant.• If $n = 1$, rate is directly
proportional to the
concentration of
reactant.• If $n = 2$, rate is
proportional to the
concentration of
reactant.• The concentration of the
reactant decreases
linearly with time.• The rate slows down as
the reaction proceeds
because the• The rate is more
sensitive to the reactant

concentration of the

reactant decreased.

СС

 The slope of the line is constant, indicating a constant rate.

> Chemical Reaction Part 1 By Wan Nurul Huda

http://ocw.ump<mark>.e</mark>du.my/course/view.php?id=350#section-3

concentration.

Exercise 2

Consider the reaction between nitrogen dioxide and carbon monoxide:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

The initial rate of the reaction is measured at several different concentrations of the reactants, and tabulated in Table 1.

From the data, determine:

- a) The rate law for the reaction
- b) The rate constant (*k*) for the reaction

· · · ·		
[NO ₂](M)	[CO](M)	Initial Rate (M/s)
0.10	0.10	0.0021
0.20	0.10	0.0082
0.20	0.20	0.0083
0.40	0.10	0.033
		Chemical Reaction Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/

- The rate laws show the relationship between the <u>rate of a reaction</u> and <u>the concentration of</u> <u>a reactant</u>.
- How to check the relationship between the concentration of a reactant and time?

The Integrated Rate Law

The **integrated rate law** for a chemical reaction is a relationship between the **concentrations of the reactants** and **time**.

First-Order Integrated Rate Law

 $A \rightarrow product$

- Rate = $k[A] = -\Delta[A] / \Delta t$
- Rearrange:

 $\frac{\Delta[A]}{\Delta t} = k[A]$ - also known as the differential rate law

- The integrated rate law:
- $\ln[A]_t = -kt + \ln[A]_0$

$$ln\frac{[A]_t}{[A]_0} = -kt$$

Where

k

- [A]_t = concentration of A at any time t
 - = rate constant
- [A]₀ = initial concentration of A

First-Order Integrated Rate Law

• The integrated rate law has the form of an equation for a straight line.

•
$$\ln[A]_{t} = -kt + \ln[A]_{0}$$

Second-Order Integrated Rate Law

$$A \rightarrow product$$

- Rate = $k[A]^2 = -\Delta[A]/\Delta t$
- Rearrange: differential rate law

•
$$\frac{\Delta[A]}{\Delta t} = k[A]^2$$

• The second-order integrated rate law:

•
$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$

Form equation for a straight line

Second-Order Integrated Rate Law

A plot of the inverse of the reactant concentration vs time yields a straight line.

Time

Conclusion of The Chapter

This chapter discussed about rate of reaction, rate law, and integrated rate law.

Chemistry, A molecular Approach, Nivaldo J. Tro, Pearson, 4th Edition, 2017

Chemical Reaction Part 1 By Wan Nurul Huda http://ocw.ump.edu.my/course/view.php?id=350#section-3

Communitising Technology