BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING

Direct Current Circuits : Methods of Analysis

Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang

Direct Current Circuit (DC)Methods of Analysis BFF1303 ELECTRICAL/ELECTRONICS ENGINEERING

Faculty of Manufacturing

Contents:

- Outcomes
- Nodal Analysis
- Mesh Analysis

Compute the solution of circuits containing linear resistors and independent and dependent sources by using node analysis

Compute the solution of circuits containing linear resistors and independent and dependent sources by using mesh analysis

BFFI303 Electrical/Electronic Engineering

Nodal Analysis

WThere is another method to solve for currents and voltages.
国Easier
nMore methodical
Still based on Ohm's Law, KVL and KCL

The methods are the nodal and mesh analysis.

Nodal analysis is based on the KCL.

Mesh analysis is based on the KVL.

Nodal Analysis

WITHOUT VOLTAGE SOURCE

国Analyze the circuit using node voltages as the circuit variables.

The node voltages is chosen instead of the elements voltages.

To simplify matters, it is first assumed that the circuits do not contain voltage sources.

Nodal Analysis

Steps to determine node voltages:

i. Select a node as a reference node - This reference node also called the ground, have zero potential.

Nodal Analysis

ii. The other node (nonreference nodes) will be assigned as v_{1}, v_{2}, \cdots

Nodal Analysis

iii. Apply KCL to each of the nonreference node.

At node v_{1} :
$I_{1}=I_{2}+i_{1}+i_{2}$

At node v_{2} :
$i_{3}=I_{2}+i_{2}$

Nodal Analysis

iv. Apply the Ohm's law to express the unknown current i_{1}, i_{2} and i_{3} in terms of node voltages.

$$
i=\frac{v_{\text {higher }}-v_{\text {lower }}}{R}
$$

Note: Current flows from a higher potential (positive terminal) to a lower potential (negative terminal) in resistor.

Nodal Analysis

$$
i_{1}=\frac{v_{1}-0}{R_{1}} \quad i_{2}=\frac{v_{1}-v_{2}}{R_{2}}
$$

$$
i_{3}=\frac{v_{2}-0}{R_{3}}
$$

$$
I_{1}=I_{2}+\frac{v_{1}-0}{R_{1}}+\frac{v_{1}-v_{2}}{R_{2}} \quad \frac{v_{2}-0}{R_{3}}=I_{2}+\frac{v_{1}-v_{2}}{R_{2}}
$$

Example \#1

Obtain the node voltages for the following circuit

Solution

i. Select a node as a reference node
ii. The other node (nonreference nodes) will be assigned as $v_{1}, v_{2} \ldots$
iii. Apply KCL to each of the nonreference node.

At node v_{1} :
$i_{1}-i_{2}-i_{3}=0$
At node v_{2} :
$i_{1}=i_{2}+i_{3}$

$$
i_{2}+i_{4}-i_{1}-i_{5}=0
$$

$$
i_{2}+i_{4}=i_{1}+i_{5}
$$

$$
\begin{gathered}
i_{2}=\frac{v_{1}-v_{2}}{4} \quad i_{3}=\frac{v_{1}-0}{2} \quad i_{5}=\frac{v_{2}-0}{6} \\
5=\frac{v_{1}-v_{2}}{4}+\frac{v_{1}}{2} \quad \frac{v_{1}-v_{2}}{4}+10=5+\frac{v_{2}}{6}
\end{gathered}
$$

Rearrange the equation

$$
\begin{aligned}
& 3 v_{1}-v_{2}=20 \\
& -3 v_{1}+5 v_{2}=60
\end{aligned}
$$

Then in matrix form
By using Cramer's Rule

$$
\begin{gathered}
{\left[\begin{array}{cc}
3 & -1 \\
-3 & 5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
20 \\
60
\end{array}\right] \Delta=\left|\begin{array}{cc}
3 & -1 \\
-3 & 5
\end{array}\right|=15-3=12} \\
v_{1}=\frac{\Delta_{1}}{\Delta}=\frac{\left[\begin{array}{cc}
20 & -1 \\
60 & 5
\end{array}\right]}{\Delta}=\frac{100+60}{12}=13.333 \mathrm{~V} \\
v_{2}=\frac{\Delta_{2}}{\Delta}=\frac{\left[\begin{array}{cc}
3 & 20 \\
-3 & 60
\end{array}\right]}{\Delta}=\frac{180+60}{12}=20 \mathrm{~V}
\end{gathered}
$$

Example \#2

In the given circuit, obtain the node voltages

Answer

$$
v_{1}=-6 \mathrm{~V} \quad v_{2}=-42 \mathrm{~V}
$$

Example \#3

For the given circuit, determine the voltages at the nodes

Answer

$$
v_{1}=4.8 \mathrm{~V} \quad v_{2}=2.4 \mathrm{~V} \quad v_{3}=-2.4 \mathrm{~V}
$$

Nodal Analysis

Review of steps for nodal analysis without voltage sources:
i. Select a node as a reference node - This reference node also called the ground, have zero potential.
ii. The other node (nonreference nodes) will be assigned as v_{1}, v_{2}, \cdots
iii. Apply KCL to each of the nonreference node.
iv. Apply the Ohm's law to express the unknown current i_{1}, i_{2} and i_{3} in terms of node voltages.

$$
i=\frac{v_{\text {higher }}-v_{\text {lower }}}{R}
$$

Nodal Analysis

WITH VOLTAGE SOURCE

[ase 1

If a voltage source is connected between the reference node and a nonreference node. The voltage at the nonreference node equal to the voltage source.

Nodal Analysis

早Case 2

If the voltage source (dependent or independent) is connected between two nonreference nodes, the two nonreference nodes form a generalized node or supernode.

Nodal Analysis

A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it.

BFFI303 Electrical/Electronic Engineering

Nodal Analysis

国A supernode requires the applications of both KCL and KVL.

国A supernode has no voltage of its own.
[1 A supernode can be assumed as one big node.

Nodal Analysis

Steps for nodal analysis with voltage source:- ${ }^{\text {PAHANG }}$

i. Select a node as a reference node - This reference node also called the ground, have zero potential.
ii. Assign the other nodes (nonreference nodes) as v_{1}, v_{2}, \cdots and identify the supernode.
iii. Apply KCL to each of the nonreference node and the supernode.

Note: For supernode, apply the KCL around the supernode. Assume the supernode as one big node

Nodal Analysis

iv. Express the currents in term of node voltages.

$$
i=\frac{v_{\text {higher }}-v_{\text {lower }}}{R}
$$

v. Apply KVL around the supernode.

Example \#4

Obtain the node voltages for the following circuit

Example \#4

Solution

i. Select a node as a reference node
ii. Assign the other node (nonreference nodes) as $v_{1}, v_{2} \cdots$ and identify the supernode
iii. Apply KCL to each of the nonreference node and the supernode.

At node $v_{1} @ 1$:

$$
\text { At node } v_{2} @ 2 \text { : }
$$

$$
\begin{array}{ll}
i_{1}-2=0 & i_{2}+7=0 \\
i_{1}=2 \mathrm{~A} & i_{2}=-7 \mathrm{~A}
\end{array}
$$

At supernode

$$
2-i_{1}-i_{2}-7=0
$$

$$
2=i_{1}+i_{2}+7
$$

Example \#4
iv. Express the currents in term of node voltages.

$$
i_{1}=\frac{v_{1}-0}{2} \quad i_{2}=\frac{v_{2}-0}{4} \quad 2=\frac{v_{1}}{2}+\frac{v_{2}}{4}+7
$$

Rearrange the equation

$$
\begin{aligned}
& 8=2 v_{1}+v_{2}+28 \\
& v_{2}=-20-2 v_{1}
\end{aligned}
$$

v. Apply KVL around the supernode.

$$
\begin{aligned}
& -v_{1}-2+v_{2}=0 \\
& v_{2}=v_{1}+2
\end{aligned}
$$

Then in matrix form

By using Cramer's Rule

$$
\begin{gathered}
{\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-20 \\
2
\end{array}\right] \quad \Delta=\left|\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right|=2+1=3} \\
v_{1}=\frac{\Delta_{1}}{\Delta}=\frac{\left[\begin{array}{cc}
-20 & 1 \\
2 & 1
\end{array}\right]}{\Delta}=\frac{-20-2}{3}=-7.333 \mathrm{~V} \\
v_{2}=\frac{\Delta_{2}}{\Delta}=\frac{\left[\begin{array}{cc}
2 & -20 \\
-1 & 2
\end{array}\right]}{\Delta}=\frac{4-20}{3}=-5.333 \mathrm{~V}
\end{gathered}
$$

Example \#5

Find v and i for the given circuit

Answer

$v=-400 \mathrm{mV}$
$i=2.8 \mathrm{~A}$

Obtain the node voltages for the following circuit

Solution

i. Select a node as a reference node
ii. Assign the other node (nonreference nodes) as $v_{1}, v_{2} \cdots$ and identify the supernode
iii. Apply KCL to each of the nonreference node and the supernode.

At supernode 1-2:

$$
\begin{aligned}
& i_{3}+10-i_{1}-i_{2}=0 \\
& i_{3}+10=i_{1}+i_{2}
\end{aligned}
$$

At supernode 3-4: $i_{1}-i_{3}-i_{4}-i_{5}=0$
$i_{1}=i_{3}+i_{4}+i_{5}$
30

$$
\begin{gathered}
i_{1}=\frac{v_{1}-v_{4}}{3} \quad i_{2}=\frac{v_{1}-0}{2} \quad i_{3}=\frac{v_{3}-v_{2}}{6} \\
i_{4}=\frac{v_{4}-0}{1} \quad i_{5}=\frac{v_{3}-0}{4}
\end{gathered}
$$

$$
\begin{array}{ll}
\frac{v_{3}-v_{2}}{6}+10=\frac{v_{1}-v_{4}}{3}+\frac{v_{1}}{2} & \frac{v_{1}-v_{4}}{3}=\frac{v_{3}-v_{2}}{6}+\frac{v_{4}}{1}+\frac{v_{3}}{4} \\
5 v_{1}+v_{2}-v_{3}-2 v_{4}=60 & 4 v_{1}+2 v_{2}-5 v_{3}-16 v_{4}=0
\end{array}
$$

v. Apply KVL around the supernode.

$$
\begin{aligned}
& \text { At loop } 1 \\
& -v_{1}+20+v_{2}=0 \\
& v_{1}-v_{2}=20
\end{aligned}
$$

At loop 2
$-v_{3}+3 v_{x}+v_{4}=0$
At loop 3
and $\quad v_{x}=v_{1}-v_{4}$

$$
v_{x}-3 v_{x}+6 i_{3}-20=0
$$

and

$$
3 v_{1}-v_{3}-2 v_{4}=0
$$

$$
-2 v_{1}-v_{2}+v_{3}+2 v_{4}=20
$$

$$
v_{x}=v_{1}-v_{4}
$$

$$
6 i_{3}=v_{3}-v_{2}
$$

and subs this Eq. into

$$
\begin{gathered}
5 v_{1}+v_{2}-v_{3}-2 v_{4}=60 \\
\text { and }
\end{gathered}
$$

$$
4 v_{1}+2 v_{2}-5 v_{3}-16 v_{4}=0
$$

$$
\begin{gathered}
6 v_{1}-v_{3}-2 v_{4}=80 \\
6 v_{1}-5 v_{3}-16 v_{4}=40
\end{gathered}
$$

Then in matrix form

By using Cramer's Rule

$$
\Delta=\left|\begin{array}{lll}
3 & -1 & -2 \\
6 & -1 & -2 \\
6 & -5 & -16
\end{array}\right|=-18
$$

$$
v_{1}=\frac{\Delta_{1}}{\Delta}=\frac{\left[\begin{array}{ccc}
0 & -1 & -2 \\
80 & -1 & -2 \\
40 & -5 & -16
\end{array}\right]}{\Delta}=\frac{-480}{-18}=26.667 \mathrm{~V}
$$

$$
\begin{aligned}
v_{3}=\frac{\Delta_{3}}{\Delta} & =\frac{\left[\begin{array}{ccc}
3 & -0 & -2 \\
6 & 80 & -2 \\
6 & 40 & -16
\end{array}\right]}{\Delta}=\frac{-3120}{-18}=173.333 \mathrm{~V} \\
v_{4}=\frac{\Delta_{4}}{\Delta} & =\frac{\left[\begin{array}{ccc}
3 & -1 & 0 \\
6 & -1 & 80 \\
6 & -5 & 40
\end{array}\right]}{\Delta}=\frac{840}{-18}=-46.667 \mathrm{~V} \\
v_{2} & =v_{1}-20 \\
v_{2} & =26.667-20=6.667 \mathrm{~V}
\end{aligned}
$$

Example \#7

By using nodal analysis obtain the node voltages for the following circuit

Answer

$$
v_{1}=7.608 \mathrm{~V} \quad v_{2}=-17.39 \mathrm{~V} \quad v_{3}=1.6305 \mathrm{~V}
$$

I Mohd-Khairuddin, Z Md-Yusof

Mesh Analysis

WITHOUT CURRENT SOURCE

Mesh analysis use the mesh currents as the circuit variables.

Recall: nodal analysis use the node voltages as the circuit variables.

Recall: a loop is a closed path with no node passed more than once.
[1 A mesh is a loop that does not contain any other loop within it.

Mesh Analysis

TRecall: nodal analysis applies KCL to find unknown voltages.

Mesh analysis applies KVL to find unknown currents.

abefa \& bcdeb are meshes.
abcdefa is not a mesh.

Mesh Analysis

1The current through a mesh is known as mesh current.

Wirst, the analysis will concentrate on circuit with no current source.

חSteps to determine mesh currents:
i. Assign mesh currents $i_{1}, i_{2}, \cdots, i_{n}$ to the n meshes. The flow of the mesh currents is conventionally assume in clockwise direction.
ii. Determine the polarity \& the direction of current flow through each element.
iii. Apply KCL for each node in term of mesh current.
iv. Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.

Mesh Analysis

i. Assign the mesh currents: i_{1} and i_{2}
ii. Determine the polarity \& the direction of current.

Note: let the direction of current at the outside branch = direction of the mesh current

Mesh Analysis

iii. Apply KCL.

$$
I_{3}=I_{1}-I_{2} \quad \text { since } \quad \begin{aligned}
& I_{1}=i_{1} \\
& \\
& I_{2}=i_{2}
\end{aligned}
$$

$$
I_{3}=i_{1}-i_{2}
$$

Note: I for branch current, i for mesh current
iv. Apply KVL to each mesh.

Mesh $1 \quad-15+5 i_{1}+10\left(i_{1}-i_{2}\right)+10=0$

$$
\begin{equation*}
3 i_{1}-2 i_{2}=1 \tag{1}
\end{equation*}
$$

Mesh 2

$$
\begin{array}{ll}
6 i_{2}+4 i_{2}-10\left(i_{1}-i_{2}\right)-10=0 & \begin{array}{l}
\text { Universiti } \\
\text { Malaysia } \\
\text { MAHANG }
\end{array} \\
i_{1}-2 i_{2}=-1 & \rightarrow(2)
\end{array}
$$

Then in matrix form
By using Cramer's Rule

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \Delta=\left|\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right|=6-2=4} \\
& i_{1}=\frac{\Delta_{1}}{\Delta}=\frac{\left[\begin{array}{cc}
1 & -2 \\
1 & 2
\end{array}\right]}{\Delta}=\frac{2+2}{4}=1 \mathrm{~A} \quad i_{2}=\frac{\Delta_{2}}{\Delta}=\frac{\left[\begin{array}{cc}
3 & 1 \\
-1 & 1
\end{array}\right]}{\Delta}=\frac{3+1}{3}=1 \mathrm{~A}
\end{aligned}
$$

Calculate the mesh current i_{1} and i_{2} for the following circuit

Answer

$$
i_{1}=2.5 \mathrm{~A} \quad i_{2}=0 \mathrm{~A}
$$

Example \#9

Use mesh analysis to find I_{o} for the following circuit

Mesh Analysis

i. Assign the mesh currents: i_{1} and i_{2}.
ii. Determine the polarity \& the direction of current.
iii. Apply KCL.

$$
I_{o}=i_{1}-i_{2}
$$

iv. Apply KVL to each mesh.

Mesh 1

$$
\begin{array}{ll}
-24+10\left(i_{1}-i_{2}\right)+12\left(i_{1}-i_{3}\right)=0 \\
11 i_{1}-5 i_{2}-6 i_{3}=12
\end{array} \rightarrow(1)
$$

Mesh Analysis

Mesh 2

$$
\begin{aligned}
& 24 i_{2}+4\left(i_{2}-i_{3}\right)+10\left(i_{2}-i_{1}\right)=0 \\
& -5 i_{1}+19 i_{2}-2 i_{3}=0 \quad \rightarrow(2)
\end{aligned}
$$

Mesh 3

$$
\begin{aligned}
& 4\left(i_{1}-i_{2}\right)+12\left(i_{3}-i_{1}\right)+4\left(i_{3}-i_{2}\right)=0 \\
& -i_{1}-i_{2}+2 i_{3}=0 \quad \rightarrow(3)
\end{aligned}
$$

Then in matrix form

Mesh Analysis

$$
\left[\begin{array}{ccc}
11 & -5 & -6 \\
-5 & 19 & -2 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{c}
12 \\
0 \\
0
\end{array}\right]
$$

By using Cramer's Rule

$$
\begin{gathered}
\Delta=192 \\
i_{1}=\frac{\Delta_{1}}{\Delta}=\frac{432}{192}=2.25 \mathrm{~A} \quad i_{2}=\frac{\Delta_{2}}{\Delta}=\frac{144}{192}=0.75 \mathrm{~A} \\
i_{3}=\frac{\Delta_{3}}{\Delta}=\frac{288}{192}=1.5 \mathrm{~A}
\end{gathered}
$$

Thus, $I_{o}=i_{1}-i_{2}=1.5 \mathrm{~A}$

Example \#10

By using mesh analysis find I_{o} in the following circuit

Answer

$$
I_{o}=-4 \mathrm{~A}
$$

Mesh Analysis

WITH CURRENT SOURCE

Case 1
When the current source exist only in one mesh

Set the value of $i_{2}=-5 \mathrm{~A}$ and write a mesh equation for the other mesh in the usual way.

$$
-10+4 i_{1}+6\left(i_{1}-i_{2}\right)=0 \quad \Rightarrow \quad i_{1}=-2 \mathrm{~A}
$$

Mesh Analysis

Case 2

When the current source exist between two meshes.

need to create a supermesh by excluding the current source and any elements connected in series with it.

Mesh Analysis

NOTE: A supermesh results when two meshes have a (dependent or independent) current source in common.

Applying KVL to the supermesh

$$
\begin{array}{ll}
-20+6 i_{1}+10 i_{2}+4 i_{2}=0 & \\
6 i_{1}+14 i_{2}=20 \quad \rightarrow(1)
\end{array}
$$

Mesh Analysis

Applying KCL to the circuit

$$
i_{2}=i_{1}+6
$$

Then solve the
Eq. (1) and (2)

$$
i_{1}=-3.2 \mathrm{~A} \quad i_{2}=2.8 \mathrm{~A}
$$

Mesh Analysis

[1] The current source in the supermesh provides the constraint equation necessary to solve for the mesh currents.
[1] A supermesh has no current of its own.

II A supermesh requires the application of both KVL and KCL.

Example \#11

By using mesh analysis find i_{1}, i_{2} and i_{3} in the following circuit

Example \#11

i. Assign the mesh currents: i_{1}, i_{2} and i_{3}.
ii. Determine the polarity \& the direction of current.
iii. Applying KCL to supermesh.

$$
i_{1}=4+i_{2} \quad \rightarrow(1)
$$

Notice that meshes (1) and (2) form a supermesh since they have independent current source in common

Example \#11

iv. Apply KVL to supermesh.

$$
\begin{array}{ll}
-8+2\left(i_{1}-i_{3}\right)+4\left(i_{2}-i_{3}\right)+8 i_{2}=0 \\
2 i_{1}+12 i_{2}-6 i_{3}=8 & \rightarrow(2)
\end{array}
$$

Applying KVL in Mesh 3

$$
\begin{aligned}
& 2 i_{3}+4\left(i_{3}-i_{2}\right)+2\left(i_{3}-i_{1}\right)=0 \\
& -2 i_{1}-4 i_{2}+8 i_{3}=0 \quad \rightarrow(3)
\end{aligned}
$$

Then in matrix form

Example \#11 $\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 12 & -6 \\ -2 & -4 & 8\end{array}\right]\left[\begin{array}{l}i_{1} \\ i_{2} \\ i_{3}\end{array}\right]=\left[\begin{array}{l}4 \\ 8 \\ 0\end{array}\right]$

By using Cramer's Rule $\quad \Delta=76$

$$
\begin{gathered}
i_{1}=\frac{\Delta_{1}}{\Delta}=\frac{352}{76}=4.3516 \mathrm{~A} \quad i_{2}=\frac{\Delta_{2}}{\Delta}=\frac{48}{76}=0.6316 \mathrm{~A} \\
i_{3}=\frac{\Delta_{3}}{\Delta}=\frac{112}{76}=1.4737 \mathrm{~A}
\end{gathered}
$$

By using mesh analysis find i_{1}, to i_{4} in the following circuit

Answer $i_{1}=-7.5 \mathrm{~A} \quad i_{2}=-2.5 \mathrm{~A} \quad i_{3}=3.93 \mathrm{~A} \quad i_{2}=2.143 \mathrm{~A}$

