BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING

Direct Current Circuits : Basic Law

Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang

Direct Current Circuit (DC)Basic Laws
 BFF1303 ELECTRICAL/ELECTRONICS ENGINEERING

BFFI303 Electrical/Electronic Engineering

Contents:

- Ohm' Law
- Resistor
- Capacitor
- Inductor
- Kirchhoff's Law
- Series Resistors and Voltage Division
- Parallel Resistors and Current Division

Faculty of Manufacturing
Universiti Malaysia Pahang
Kampus Pekan, Pahang Darul Makmur Tel: +609-424 5800 Fax: +609-4245888

Ohm's

Tl Most material have a characteristic behavior of resisting the flow of electric charge.

国 The physical property to resist current known as resistance and is represented by the symbol R.
[10 The resistance of any material with a uniform cross-sectional area A depends on A and its length l

$$
R=p \frac{l}{A}
$$

Ohm's
 Law

Resistivities of common materials

Material	Resistivity $(\Omega \bullet \mathrm{m})$	Usage
Silver	1.64×10^{-8}	Conductor
Copper	1.72×10^{-8}	Conductor
Aluminium	2.8×10^{-8}	Conductor
Gold	2.45×10^{-8}	Conductor
Carbon	4×10^{-5}	Semiconductor
Germanium	47×10^{-2}	Semiconductor
Silicon	6.4×10^{2}	Semiconductor
Paper	10^{10}	Insulator
Mica	5×10^{11}	Insulator
Glass	10^{12}	Insulator
Teflon	3×10^{12}	Insulator

Ohm's Law

nohm's Law states that the voltage v across a resistor is directly proportional to the current i flowing through the resistor.

[1] The resistance R of an element denotes its ability to resist the flow of electric current; it is measured in ohms (Ω).

Ohm's

The direction of current and the polarity of voltage must conform with the passive sign convention

且 Current enter at positive terminal $v=i R$
Current enter at negative terminal $v=-i R$
n ran be ranged from zero to infinity

$$
v=i R=0
$$

四An element with $R=0$:- short circuit.
[In short circuit, the voltage is always is not.
-In practice, a short circuit is always connecting wire assumed to be a conductor.

Ohm's Law

IIAn element with $R=\infty$:- open circuit.
-In open circuit, the current is always zero but the voltage is not.

$$
i=\lim _{R \rightarrow \infty} \frac{v}{R}=0
$$

Ohm's
 Law

In Another quantity in circuit analysis - conductance, denoted by G.

$$
G=\frac{1}{R}=\frac{i}{v}
$$

[1] Conductance is a measure of how well an element will conduct electric current.
[1] The unit of conductance - mho, U or siemens, S .
The power dissipate by the resistor can expressed in term of R :

$$
p=v i=i^{2} R=\frac{v^{2}}{R}
$$

$$
p=v i=v^{2} G=\frac{i^{2}}{G}
$$

Ohm's Law

In The power dissipated in a resistor is always positive.
Il Thus resistors always absorbed power from the circuit.
Th This shows that the resistor is a passive element.

Resistor

[1] The resistor is far and away the simplest circuit element.
In In a resistor, the voltage v is proportional to the current i, with the constant of proportionality R known as the resistance.

$$
\begin{aligned}
& v \propto i \\
& v=i R \\
& R=\frac{v}{i}
\end{aligned}
$$

血 Resistor is an element denotes its ability to resist the flow of electric current, it is measured in ohms (Ω).

Resistor

COLOR	1st BAND	2nd BAND	3rd BAND	MULTIPLIER	TOLERANCE	
Black	0	0	0	1Ω		(F)
Erown	1	1	1	10Ω	$\pm 1 \%$	
Red	2	2	2	1000	$\pm 2 \%$	(S)
Orange	3	3	3	$1 \mathrm{~K} \Omega$		
Yellow	4	4	4	$10 \mathrm{~K} \Omega$		
Green	5	5	5	$100 \mathrm{~K} \Omega$	$\pm 0.5 \%$	(D)
Blue	6	6	6	1Ma	$\pm 0.25 \%$	(C)
Vlolet	7	7	7	10 MO	$\pm 0.10 \%$	(B)
Grey	8	8	8		$\pm 0.05 \%$	
White	9	9	9			
Gold				0.1	$\pm 5 \%$	(3)
Silver				0.01	$\pm 10 \%$	(K)
				-1	$\pm 1 \%$	

I Mohd-Khairuddin , Z Md-Yusof

Resistor

The above resistance is $1,000,000 \Omega$ or $1 \mathrm{M} \Omega$.
The 10% means the actual resistance is between $1.1 \mathrm{M} \Omega$ and 900k Ω.

Resistor

The above resistance is $150,000 \Omega$ or $150 \mathrm{k} \Omega$.
[1] The 5% means the actual resistance is between $157.5 \mathrm{k} \Omega$ and $142.5 \mathrm{k} \Omega$

The essential component of a toaster is an electrical element (a resistor that converts electrical energy to heat energy. How much current is drawn by a toaster with resistance 15Ω at 110 V ?

Solution

$$
\begin{aligned}
& i=\frac{v}{R} \\
& =\frac{110}{15} \\
& =7.333 \mathrm{~A}
\end{aligned}
$$

In the given circuit, calculate the current i, the conductance G and the power p.

Solution

$i=\frac{v}{R}=\frac{30}{5 \mathrm{k}}=6 \mathrm{~mA}$

$$
p=v i=30(6 \mathrm{~m})=180 \mathrm{~mW}
$$

$$
G=\frac{1}{R}=\frac{1}{5 \mathrm{k}}=0.2 \mathrm{mS}
$$

For the given circuit, calculate the voltage v, the conductance G and the power p.

Solution

$$
\begin{aligned}
& v=i R=(30 \mathrm{~m})(10 \mathrm{k})=30 \mathrm{~V} \\
& G=\frac{1}{R}=\frac{1}{10 \mathrm{k}}=100 \mu \mathrm{~S} \quad p=i^{2} R=(30 \mathrm{~m})^{2}(10 \mathrm{k})=90 \mathrm{~mW}
\end{aligned}
$$

Capacitor

[1] Unlike resistor which dissipate energy, capacitor store energy, which can be retrieved at later time.

In Also called storage elements. The energy is stored in its electric field.
[1t is a passive elements.

Capacitor

10 Capacitor acts as a storage element:

i. There is a capacitor in parallel with the resistor and light bulb. The way the capacitor functions is by acting as a very low resistance load when the circuit is initially turned on. This is illustrated below:

ii. Initially, the capacitor has a very low resistance, almost 0 . Since electricity takes the path of least resistance, almost all the electricity flows through the capacitor, not the resistor, as the resistor has considerably higher resistance.

Capacitor

iii. As a capacitor charges, its resistance increases as it gains more and more charge. As the resistance of the capacitor climbs, electricity begins to flow not only to the capacitor, but through the resistor as well:

iv. Once the capacitor's voltage equals that of the battery, meaning it is fully charged, it will not allow any current to pass through it. As a capacitor charges its resistance increases and becomes effectively infinite (open connection) and all the electricity flows through the resistor.

Capacitor

v. Once the voltage source is disconnected, however, the capacitor acts as a voltage source itself:

vi. As time goes on, the capacitor's charge begins to drop, and so does its voltage. This means less current flowing through the resistor:

Capacitor

vii. Once the capacitor is fully discharged, you are back to square one:

II The unit to measure the capacitance of a capacitor is farad (F).

CAPACITOR GUIDE

The Result of Capacitor Code is Given in pF

$1^{\text {r }}$ Digit	Digit	Multiplier	erance ($\pm \%$)
Of Value Of	alue		
			$\begin{aligned} & \mathrm{F}=1 \% \\ & \mathrm{G}=2 \% \end{aligned}$
$474=$	474	Max.	$\begin{aligned} & \mathrm{G}=2 \% \\ & \mathrm{~J}=5 \% \end{aligned}$
$47 \times 10,000 \mathrm{pF}$		Voltage	$\mathrm{K}=10 \%$
$=.47 \mu \mathrm{~F}$			$\begin{aligned} & M=20 \% \\ & Z=+80 \% /-20 \% \end{aligned}$

On some capacitors the value is shown as a straight number (4.7 pF). On others the decimal point is replaced with the first letter of the prefix ($4 \mathrm{p} 7=4.7 \mathrm{pF}$).

Prefix	Abbr.	Multiplier
pico	p	10^{-12}
nano	n	10^{-9}
micro	μ	10^{-6}

1000 pico $=1$ nano
1 nano $=.001$ micro 1000 nano $=1$ micro

EXAMPLES:

$$
\begin{aligned}
& 223 \mathrm{~J}=22 \times 10^{3} \mathrm{pF}=22 \mathrm{nF}=0.022 \mu \mathrm{~F} \quad 5 \% \\
& 151 \mathrm{~K}=15 \times 10^{\prime} \mathrm{pF}=150 \mathrm{pF} \quad 10 \%
\end{aligned}
$$

Inductor

[II is a passive element designed to store energy in its magnetic field.

HInductor consists of a coil of conducting wire.

BFFI303 Electrical/Electronic Engineering

Inductor

Inductance is measured in henrys (H).

Tiler example:
What you see here is a battery, a light bulb, a coil of wire around a piece of iron (yellow) and a switch. The coil of wire is an inductor.

Inductor

11 Without the inductor in this circuit, what you would have is a normal flashlight. You close the switch and the bulb lights up.
[1] If there is an inductor, when the switch is closed the bulb burns brightly and then gets dimmer. When the switch is opened, the bulb burns very brightly and then quickly goes out.
[1] The reason for this strange behavior is the inductor. When current first starts flowing in the coil, the coil wants to build up a magnetic field.

Tl While the field is building, the coil inhibits the flow of current. Once the field is built, current can flow normally through the wire (coil).
[1] A large amount of current will flow through this coil let only a small amount of current flow to the light bulb. This is why the bulb gets dimmer.
[1] When the switch gets opened, the magnetic field around the coil keeps current flowing in the coil until the field collapses. This current keeps the bulb lit for a period of time even though the switch is open. In other words, an inductor can store energy in its magnetic field, and an inductor tends to resist any change in the amount of current flowing through it.

Inductor

II Analogy
[0] One way to visualize the action of an inductor is to imagine a narrow channel with water flowing through it, and a heavy water wheel that has its paddles dipping into the channel. Imagine that the water in the channel is not flowing initially. Now you try to start the water flowing. The paddle wheel will tend to prevent the water from flowing until it has come up to speed with the water. If you then try to stop the flow of water in the channel, the spinning water wheel will try to keep the water moving until its speed of rotation slows back down to the speed of the water. An inductor is doing the same thing with the flow of electrons in a wire - an inductor resists a change in the flow of electrons.

Inductor

INDUCTOR COLOR GUIDE

Result Is In $\mu \mathrm{H}$

COLOR	1st BAND	2nd BAND	MULTIPLIER	TOLERANCE
BLACK	0	0	1	$\pm 20 \%$
BROWN	1	1	10	Military $\pm 1 \%$
RED	2	2	100	Military $\pm 2 \%$
ORANGE	3	3	1,000	Military $\pm 3 \%$
YELLOW	4	4	10,000	Military $\pm 4 \%$
GREEN	5	5		
BLUE	6	6		
VIOLET	7	7		
GREY	8	8		
WHITE	9	9		
NONE				Military $\pm 20 \%$
GOLD			0.1/ Mil. Dec. Pt	Both $\pm 5 \%$
SILVER			0.01	Both $\pm 10 \%$

Electronix Express/RSR
http://www.elexp.com

1-800-972-2225
In NJ 732-381-8020

Kirchhoff's Law

The foundation of circuit analysis is:
WThe defining equations for circuit elements (e.g. Ohm's law)
©Kirchhoff's current law (KCL)
Wirchhoff's voltage law (KVL)

曽Kirchhoff's laws tell how the voltage and current within a circuit element are related.

WKirchhoff's first law is based on the law of conservation of charge, which required that the algebraic sum of charges within a system cannot change.

Kirchhoff's
 Law

 currents entering a node (or a closed boundary) is zero.

$$
\sum_{n=1}^{N} i_{n}=0 \quad N=\text { number of branches connected to a node. }
$$

[1] One can assume that currents entering a node as positive while leaving the node as negative or vice versa.

$$
\begin{aligned}
& i_{1}+\left(-i_{2}\right)+i_{3}+i_{4}+\left(-i_{5}\right)=0 \\
& i_{1}+i_{3}+i_{4}=i_{2}+i_{5}
\end{aligned}
$$

Kirchhoff's

Law

Kirchhoff's
 Law

酸irchhoff's second law is based on the principle of conservation energy.

留Kirchhoff's voltage law (KVL) - the algebraic sum of all voltages

 around a closed path (or loop) is zero.$$
\sum_{m=1}^{M} v_{m}=0 \quad M=\text { number of voltages on the loop. }
$$

i. Start at any branch and go around the loop either clockwise / counterclockwise.
ii. Check which terminal the loop encounter first,
a) If positive terminal then $+v$.
b) If negative terminal then $-v$.

Kirchhoff's

Law

Kirchhoff's

TSteps for Kirchhoff's laws:
andermine the direction of current flowing through the passive elements (resistors).
[10 Obtain the voltage across each elements. If the current flow through:
@ Positive terminal, thus $v=+i R$
@ Negative terminal, thus $v=-i R$

MFor KCL, obtain the equation by assuming if a current:
Enter a node,$+i$
Leaving a node, $-i$

LObtain the KVL equation based on the chosen loop (clockwise or counterclockwise). If the loop enter:
mositive terminal, $+v$
Negative terminal, $-v$

Example \#4

Find voltage v_{1} and v_{2} for the given circuit.

Solution

Apply Ohm's law \& KVL. Assume the current i flow through the loop as shown below.

From Ohm's law,

$$
v_{1}=2 i, \quad v_{2}=-3 i
$$

Applying KVL around a loop.
$-20+v_{1}-v_{2}=0$
$-20+2 i-(-3 i)=0$

Thus
$i=4 \mathrm{~A}$
Then, the of value of v_{1} and v_{2}

$$
\begin{array}{ll}
v_{1}=2(4), & v_{2}=-3(4) \\
v_{1}=8 \mathrm{~V}, & v_{2}=-12 \mathrm{~V}
\end{array}
$$

Example \#5

Find voltage v_{1} and v_{2} for the given circuit.

2Ω

Solution

Apply Ohm's law \& KVL. Assume the current i flow through the loop as shown below.

Example \#5

From Ohm's law,
$v_{1}=4 i, \quad v_{2}=-2 i$

Applying KVL around a loop.
$-32+v_{1}-(-8)-v_{2}=0$
$-32+4 i+8+2 i=0$

Thus
$i=4 \mathrm{~A}$
Then, the of value of v_{1} and v_{2}

$$
\begin{array}{ll}
v_{1}=4(4), & v_{2}=-2(4) \\
v_{1}=16 \mathrm{~V}, & v_{2}=-8 \mathrm{~V}
\end{array}
$$

Example \#6

Find v_{x} and v_{o} for the given circuit.

Solution

Apply Ohm's law \& KVL. Assume the current i flow through the loop as shown below.

From Ohm's law,

$$
v_{x}=10 i, \quad v_{o}=-5 i
$$

Applying KVL around a loop.
$-70+v_{x}+2 v_{x}-v_{o}=0$
$-70+10 i+2(10 i)+5 i=0$

Thus
$i=2 \mathrm{~A}$

Then, the of value of v_{x} and v_{o}

$$
\begin{array}{ll}
v_{x}=10(2), & v_{o}=-5(2) \\
v_{x}=20 \mathrm{~V}, & v_{o}=-10 \mathrm{~V}
\end{array}
$$

Example \#7

Find current i_{o} and voltage v_{o} for the given circuit.

Solution

Apply Ohm's law \& KCL.

Example \#7

From Ohm's law,

$$
v_{o}=4 i_{o}
$$

Applying KCL to node a.

$$
\begin{aligned}
& 0.5 i_{o}-i_{o}+3=0 \\
& i_{o}=6 \mathrm{~A}
\end{aligned}
$$

Then, the of value of v_{o}

$$
\begin{aligned}
& v_{o}=4(6) \\
& v_{o}=24 \mathrm{~V}
\end{aligned}
$$

Example \#8

Find currents and voltages for the given circuit.

Solution

Apply Ohm's law \& Kirchhoff's Law.

Example \#8

From Ohm's law,
$v_{1}=8 i_{1}$
$v_{2}=3 i_{2}$
$v_{3}=6 i_{3}$
Applying KCL to node a.
$i_{1}-i_{2}-i_{3}=0$
$i_{1}=i_{2}+i_{3}$
$\rightarrow(1)$

$$
\begin{aligned}
& -30+v_{1}+v_{2}=0 \\
& -30+8 i_{1}+3 i_{2}=0 \\
& i_{1}=\frac{\left(30-3 i_{2}\right)}{8}
\end{aligned}
$$

$$
\rightarrow(2)
$$

Applying KVL to loop 2.
$-v_{2}+v_{3}=0$
$v_{2}=v_{3}$
$\rightarrow(3)$
$3 i_{2}=6 i_{3}$
$i_{3}=0.5 i_{2}$

$$
\rightarrow(4)
$$

From the value of i_{2}, we can obtain another voltages and currents

Subs eq. (2) and (4) into (1).

$$
\frac{\left(30-3 i_{2}\right)}{8}=i_{2}+0.5 i_{2}
$$

$$
i_{2}=2 \mathrm{~A}
$$

$$
\begin{array}{ll}
i_{1}=3 \mathrm{~A} & v_{1}=24 \mathrm{~V} \\
i_{3}=1 \mathrm{~A} & v_{2}=6 \mathrm{~V} \\
& v_{3}=6 \mathrm{~V}
\end{array}
$$

In Recall: The current that pass through the series resistors has the same value.

[1] Consider the following figure:

[1] Applying Ohm's law to each of the resistors

$$
v_{1}=i R_{1}, \quad v_{2}=i R_{2}
$$

In Applying KVL to the loop (clockwise).

$$
-v+v_{1}+v_{2}=0 \quad \rightarrow(2)
$$

Combining Eq. (1) and (2), we get

$$
\begin{aligned}
& v=v_{1}+v_{2}=i\left(R_{1}+R_{2}\right) \quad \rightarrow(3) \\
& i=\frac{v}{\left(R_{1}+R_{2}\right)} \quad \rightarrow(4)
\end{aligned}
$$

Notice that Eq. (3) can be written as
Where $R_{e q}=R_{1}+R_{2}$

$$
v=i R_{e q} \quad \rightarrow(5)
$$

Series Resistors and Voltage Division
[19 Any number of resistors con miatersta in series is the sum of the PAHANG individual resistances.

$$
\begin{gathered}
\boldsymbol{R}_{\text {eq }}=R_{1}+R_{2}+\cdots \boldsymbol{R}_{N}=\sum_{n=1}^{N} \boldsymbol{R}_{n} \\
N=\text { number of resistors in series }
\end{gathered}
$$

1- To determine the voltage across each resistor, substitute Eq. (4) into (1)

Principle of voltage division.

$$
v_{1}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) v
$$

$$
v_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) v
$$

The source voltage v is divided among the resistors in direct proportion to their resistances; the larger the resistance, the larger the voltage drop.

In Recall: Elements in parallel have the same voltage drops

 across them.

KVL around loop 1 and 2:

$$
\begin{aligned}
& V_{1}=V_{2} \\
& V_{2}=V_{3}
\end{aligned}
$$

II Consider the following figure:

II Applying KCL to node a gives the total current i as

$$
i=i_{1}+i_{2} \quad \rightarrow(2)
$$

[1] Applying Ohm's law to each of the resistors

$$
v=i_{1} R_{1}, \quad v=i_{2} R_{2}
$$

$$
\text { i } \quad \begin{aligned}
& \text { Universiti } \\
& \text { Malavsia }
\end{aligned}
$$

$$
\rightarrow(3)
$$

$$
R_{e q}=\frac{R_{1} R_{2}}{R_{e q}}
$$

$$
\rightarrow(4)
$$

$$
\begin{aligned}
i= & \frac{v}{R_{1}}+\frac{v}{R_{2}}=v\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{v}{R_{e q}} \\
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
\end{aligned}
$$

Current Division

Subs Eq. (1) into (2)

The above Eq. (4) only apply for 2 resistor in parallel.

For N resistors in parallel

$$
\begin{equation*}
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}} \tag{5}
\end{equation*}
$$

$$
v=i R_{e q}=i\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)
$$

Subs Eq. (5) into (1)

$$
\begin{aligned}
& i_{1}=i\left(\frac{R_{2}}{R_{1}+R_{2}}\right), \quad i_{2}=i\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \rightarrow \\
& \begin{array}{l}
\text { Principle of } \\
\text { current division. }
\end{array}
\end{aligned} \rightarrow
$$

Notice that larger current flows through smaller resistance.

IIn electrical circuit, current will always flow through a path with least resistance.

WIf there is a short circuit, the entire current will flow through the short circuit.

Example \#9

Find $R_{e q}$ for the given circuit.

Solution

To get $R_{e q}$, we combine resistors in series and in parallel.

Example \#9

$$
6 \Omega \square 3 \Omega=\frac{6 \times 3}{6+3}=2 \Omega
$$

Also 1Ω in series with 5Ω

$$
2 \Omega+2 \Omega=4 \Omega
$$

Now 4Ω in parallel with 6Ω

$$
4 \Omega \square 6 \Omega=\frac{4 \times 6}{4+6}=2.4 \Omega
$$

$$
R_{e q}=4 \Omega+2.4 \Omega+8 \Omega=14.4 \Omega
$$

Example \#10

By combining the resistors find $R_{e q}$ for the following circuit.

Solution

$$
R_{e q}=10 \Omega
$$

Example \#11

Find $R_{a b}$ for the given circuit.

Solution

$R_{a b}=19 \Omega$

