ENGINEERING MECHANICS BAA1113

TUTORIAL 4(CO2)

by
Pn.Rokiah Bt Othman
Faculty of Civil Engineering \& Earth Resources
nadrah@ump.edu.my

TUTORIAL 4

T13) A clockwise couple $M=5 \mathrm{~N} . \mathrm{m}$ is resisted by the shaft of the electric motor. Determine the magnitude of the reactive force -R and R which act at supports A and B so that the resultant of the two couples is zero

ans: $\mathrm{R}=28.9 \mathrm{~N}$

TUTORIAL 4

T14)A twist of 4 N.m is applied to the handle of the screwdriver. Resolve this couple moment into a pair of couple forces F exerted on the handle and P exerted on the blade

ans: $\mathrm{F}=133 \mathrm{~N}, \mathrm{P}=800 \mathrm{~N}$

TUTORIAL 4

T15) The man tries to open the valve by applying the couple forces of $\mathrm{F}=75 \mathrm{~N}$ to the wheel. Determine the couple moment produced.

$$
\text { ans: } \mathrm{M}_{\mathrm{C}}=-22.5 \mathrm{~N} \mathrm{~m}=22.5 \mathrm{Nm} \mathrm{CW}
$$

TUTORIAL 4

T16) Determine the resultant couple moment of the two couples that act on the assembly. Specify its magnitude and coordinate direction angles α, β, γ

$$
\begin{aligned}
& \alpha=37^{\circ} \\
& \beta=111^{\circ} \\
& \gamma=61.2^{\circ}
\end{aligned}
$$

TUTORIAL 4

T17) The building slab is subjected to four parallel column loadings. Determine the equivalent resultant force and specify its location (x, y) on the slab. Given $\mathrm{F} 1=8 \mathrm{kN}$ and $\mathrm{F} 2=9 \mathrm{kN}$

ans: $\mathrm{FR}=35 \mathrm{kN}, \mathrm{y}=11.3 \mathrm{~m}, \mathrm{x}=11.5 \mathrm{~m}$

TUTORIAL 4

T18) The building slab is subjected to four parallel column loadings. Determine the F 1 and F 2 if the resultant force acts through point ($12 \mathrm{~m}, 10 \mathrm{~m}$)

$$
\mathrm{F}_{1}=27.6 \mathrm{kN}, \mathrm{~F}_{2}=24 \mathrm{kN}
$$

TUTORIAL4

T19) The beam is loaded by distributed loading as shown. Determine the equivalent resultant force and its location on the beam, measured from point A .

ans: $\mathrm{F}_{\mathrm{R}}=21 \mathrm{kN} \downarrow, \mathrm{d}=3.43 \mathrm{~m}$

TUTORIAL 4

T20) The beam is loaded by distributed loading as shown. Determine the equivalent resultant force and couple moment acting at point A

ans: $\mathrm{F}_{\mathrm{R}}=21 \mathrm{kN} \downarrow, \mathrm{d}=3.43 \mathrm{~m}$

TUTORIAL 4

T21) The beam is loaded by distributed loading as shown. Determine the length b of the triangular load and its position a on the beam such that the equivalent resultant force is zero and the resultant couple moment is 8 kNm clockwise

TUTORIAL 4

T22)If the soil exerts a trapezoidal distribution of load on the bottom of the footing, determine the intensities w_{1} and w_{2} of this distribution needed to support the column loadings

ans: $\mathrm{w}_{1}=17.2 \mathrm{kN} / \mathrm{m}, \mathrm{w}_{2}=30.3 \mathrm{kN} / \mathrm{m}$

T23) Express the moment of the couple acting on the pipe in Cartesian vector . Determine the magnitude of the couple moment. Given F $=152 \mathrm{~N}$

ans: $\mathrm{M}_{\mathrm{C}}=45.1 \mathrm{Nm}$

T24) Replace the force system acting on the frame by an equivalent resultant force and couple moment acting at point A

ans: $\mathrm{F}_{\mathrm{R}}=938 \mathrm{~N}, \theta=35.9,\left(M_{\mathrm{R}}\right)_{\mathrm{A}}=680 \mathrm{Nm} \mathrm{CCW}$

