ENGINEERING MECHANICS BAA1113

TUTORIAL 4(CO2)

by
Pn.Rokiah Bt Othman
Faculty of Civil Engineering \& Earth Resources
nadrah@ump.edu.my

TUTORIAL 4

T1) Determine the moment of each of the three forces about point A

ans: $\left(\mathrm{M}_{\mathrm{F} 1}\right)_{\mathrm{A}}=433 \mathrm{~N} . \mathrm{m} \mathrm{CW},\left(\mathrm{M}_{\mathrm{F} 2}\right)_{\mathrm{A}}=1299 \mathrm{~N} . \mathrm{m} \mathrm{CW},\left(\mathrm{M}_{\mathrm{F} 3}\right)_{\mathrm{A}}=800 \mathrm{~N} . \mathrm{m} \mathrm{CW}$

TUTORIAL 4

T2) Determine the moment of each of the three forces about point B

ans: $\left(\mathrm{M}_{\mathrm{F} 1}\right)_{\mathrm{B}}=150$ N.m CCW , $\left(\mathrm{M}_{\mathrm{F} 2}\right)_{\mathrm{B}}=600$ N.m CCW, $\left(\mathrm{M}_{\mathrm{F} 3}\right)_{\mathrm{B}}=0$ N.m

TUTORIAL 4

T3) The towline exerts a force of $\mathrm{P}=6 \mathrm{kN}$ at the end of the 8 m long crane boom. If $\theta=30^{\circ}$, determine the placement x of the hook at B so this force creates a maximum moment about point O . what is this momnet?

ans: $\left(\mathrm{M}_{\mathrm{O}}\right)_{\max }=480 \mathrm{kN} . \mathrm{m} \mathrm{CCW}, \mathrm{X}=9.814 \mathrm{~m}=9.81 \mathrm{~m}$

TUTORIAL 4

T4) The 20 N horizontal force acts on the handle of the socket wrench. What is the moment of this force about point B. Specify the coordinate direction angles α, β, γ of the moment axis

TUTORIAL 4

T5) The 20 N horizontal force acts on the handle of the socket wrench. Determine the moment of this force about point O . Specify the coordinate direction angles α, β, γ of the moment axis

TUTORIAL 4

T6) The handle of the hammer is subjected to the force of $\mathrm{F}=20 \mathrm{lb}$. Determine the moment of this force about the point A

$$
\mathrm{M}_{\mathrm{A}}=362 \mathrm{lb} . \mathrm{in} \mathrm{CW}
$$

TUTORIAL4

T 7) In order to pull out the nail at B , the force F exerted on the handle of the hammer must produce a clockwise moment of the 500 lb . in about point A . Determine the required magnitude of force F.

ans: $\mathrm{F}=27.6 \mathrm{lb}$

TUTORIAL 4

T8) If the 1500 lb boom AB , the 200 lb cage BCD , and the 175 lb man have centers of gravity located at points G1,G2 and G3, respectively, determine the resultant moment produced by each weight about point A

ans: $\left(\mathrm{M}_{\mathrm{AB}}\right)_{\mathrm{A}}=3.88$ kip.ft $\mathrm{CW},\left(\mathrm{M}_{\mathrm{BCD}}\right)_{\mathrm{A}}=2.05$ kip.ft $\mathrm{CW},\left(\mathrm{M}_{\mathrm{MAN}}\right)_{\mathrm{A}}=210 \mathrm{kip} . \mathrm{ft} \mathrm{CW}$

TUTORIAL 4

T9) If the 1500 lb boom AB , the 200 lb cage BCD , and the 175 lb man have centers of gravity located at points G1,G2 and G3, respectively, determine the resultant moment produced by all the weights about point A

$\left(\mathrm{M}_{\mathrm{R}}\right)_{\mathrm{A}}=804$ kip.ft CW

TUTORIAL 4

T10)Determine the moment of the force F about point O . Express the result as a Cartesian vector

ans: $\mathrm{M}_{\mathrm{O}}=[-40 \mathrm{i}-44 \mathrm{j}-8 \mathrm{k}] \mathrm{kN} . \mathrm{m}$

TUTORIAL 4

T11)Determine the moment of the force F about point P. Express the result as a Cartesian vector

ans: $M_{P}=[-60$ i $-26 \mathrm{j}-32 \mathrm{k}] \mathrm{kN} . \mathrm{m}$

TUTORIAL 4

T12) Force F acts perpendicular to the inclined plane. Determine the moment produced by F about point B .

ans: $\mathrm{M}_{\mathrm{B}}=\{1 \mathrm{i}+0.750 \mathrm{j}-1.56 \mathrm{k}\} \mathrm{kN} . \mathrm{m}$

