ENGINEERING MECHANICS BAA1113

Chapter 4: Force System Resultants (Static)
by
Pn Rokiah Bt Othman
Faculty of Civil Engineering \& Earth Resources
rokiah@ump.edu.my

Chapter Description

- Aims
- To explain the Moment of Force (2D-scalar formulation \& 3D-Vector formulation)
- To explain the Principle Moment
- To explain the Moment of a Couple
- To explain the Simplification of a Force and Couple System
- To explain the Reduction of Simple Distributed Loading
- Expected Outcomes
- Able to solve the problems of MOF and COM in the mechanics applications by using principle of moments
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

Chapter Outline

4.1 Moment of Force (MOF) -Part I
4.2 Principle of Moment -Part II
4.3 Moment of Couple (MOC) Part III
4.4 Simplification of a Force and Couple System
4.5 Reduction of Simple Distributed Loading- part IV

4.2 Principle of Moment

Varignon's Theorem states that "Moment of a force about a point is equal to the sum of the moments of the forces' components about the point"

$$
\begin{aligned}
& \mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}, \\
& \mathbf{M}_{\circ}=\mathbf{r} \times \mathbf{F}_{1}+\mathbf{r} X \mathbf{F}_{2} \\
&=\mathbf{r} X\left(\mathbf{F}_{1}+\mathbf{F}_{2}\right) \\
&=\mathbf{r} \times \mathbf{F}
\end{aligned}
$$

4.2 Principle of Moment

- The guy cable exerts a force \mathbf{F} on the pole and creates a moment about the base at A

$$
M_{A}=F d
$$

- If the force is replaced by F_{x} and F_{y} at point B where the cable acts on the pole, the sum of moment about point A yields the same resultant moment
- F_{y} create zero moment about A

$$
M_{A}=F_{x} h
$$

- Apply principle of transmissibility and slide the force where line of action intersects the ground at C , F_{x} create zero moment about A

$$
M_{A}=F_{y} b
$$

Example 4.9

A 200 N force acts on the bracket. Determine the MOF about point A

$\mathrm{M}_{\mathrm{O}}=\mathrm{Fd}$

Solution Example 4.9

A 200 N force acts on the bracket. Determine the MOF about point A

Method 1:

From trigonometry using triangle BCD,

$$
\begin{aligned}
\mathrm{CB} & =d=100 \cos 45^{\circ}=70.71 \mathrm{~mm} \\
& =0.07071 \mathrm{~m}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{A}}=F d=200 \mathrm{~N}(0.07071 \mathrm{~m}) \\
& =14.1 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{CCW})
\end{aligned}
$$

As a Cartesian vector,

$$
\mathbf{M}_{\mathrm{A}}=\{14.1 \mathbf{k}\} \mathrm{N} . \mathrm{m}
$$

(b)

Solution Example 4.9

A 200 N force acts on the bracket. Determine the MOF about point A

- Resolve 200N force into x and y components
- Principle of Moments

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{A}}=\sum \mathrm{Fd} \\
& \mathrm{M}_{\mathrm{A}}=\left(200 \sin 45^{\circ} \mathrm{N}\right)(0.20 \mathrm{~m})-\left(200 \cos 45_{y}^{\circ}\right)(0.10 \mathrm{~m}) \\
&=14.1 \mathrm{~N} . \mathrm{m}(\mathrm{CCW}) \\
& \text { Thus, } \\
& \mathrm{M}_{\mathrm{A}}=\{14.1 \mathrm{k}\} \mathrm{N} . \mathrm{m}
\end{aligned}
$$

(c)

Example 4.10

The force \mathbf{F} acts at the end of the angle bracket. Determine the moment of the force about point O

Solution Example 4.10

Method 1

$$
\begin{aligned}
\mathrm{M}_{\mathrm{O}} & =400 \sin 30^{\circ} \mathrm{N}(0.2 \mathrm{~m})-400 \cos 30^{\circ} \mathrm{N}(0.4 \mathrm{~m}) \\
& =-98.6 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

$$
=98.6 \mathrm{~N} . \mathrm{m}(\mathrm{CW})
$$

As a Cartesian vector,

$\mathbf{M}_{\mathrm{O}}=\{-98.6 \mathbf{k}\} \mathrm{N} . \mathrm{m}$

(b)

Solution Example 4.10

Method 2:

- Express as Cartesian vector

$$
\begin{aligned}
\mathbf{r} & =\{0.4 \mathbf{i}-0.2 \mathbf{j}\} \mathrm{N} \\
\mathbf{F} & =\left\{400 \sin 30^{\circ} \mathbf{i}-400 \cos 30^{\circ} \mathbf{j}\right\} \mathrm{N} \\
& =\{200.0 \mathbf{i}-346.4 \mathbf{j}\} \mathrm{N}
\end{aligned}
$$

For moment,

$$
\begin{aligned}
& 346.4 \mathrm{j}\} \mathrm{N} \\
& \vec{M}_{o}=\vec{r} X \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
0.4 & -0.2 & 0 \\
200.0 & -346.4 & 0
\end{array}\right|: \begin{array}{ll}
0.4 \mathrm{~m} & \text { (c) } \\
=\{-98.6 \vec{k}\} N . m
\end{array}
\end{aligned}
$$

Moment of a Force about specified axis

What is Moment of a force about a specified axis

(a)

- For moment of a force about a point, the moment and its axis is always perpendicular to the plane containing the force and the moment arm
- A scalar or vector analysis is used to find the component of the moment along a specified axis that passes through the point

Scalar analysis

- Consider the pipe assembly that lies in the horizontal plane and is subjected to the vertical force of $F=20 \mathrm{~N}$ applied at point A.
- For magnitude of moment,

$$
M_{O}=(20 N)(0.5 m)=10 \mathrm{~N} \cdot \mathrm{~m}
$$

- For direction of moment, apply right hand rule

(a) (a)
- Determine the component of \mathbf{M}_{0} about the y axis, \mathbf{M}_{y} since this component tend to unscrew the pipe from the flange at 0
- For magnitude of $\mathbf{M}_{\mathbf{y}}$,

$$
M_{y}=3 / 5(10 \mathrm{~N} \cdot \mathrm{~m})=6 \mathrm{~N} \cdot \mathrm{~m}
$$

- For direction of $\mathbf{M}_{\mathbf{y}}$, apply right hand rule

Vector Analysis

- Consider body subjected to force \mathbf{F} acting at point A
- To determine moment, \mathbf{M}_{a}
- For moment of \mathbf{F} about any arbitrary point O that lies on the aa' axis

$$
M_{0}=r X F
$$

where r is directed from O to A

- \mathbf{M}_{0} acts along the moment axis bb^{\prime}, so projected \mathbf{M}_{O} on the aa' axis is M_{A}
- For magnitude of $\mathbf{M}_{A^{\prime}}$

$$
M_{A}=M_{O} \cos \theta=\mathbf{M}_{\mathrm{O}} \cdot \mathbf{u}_{\mathrm{a}}
$$

- where \mathbf{u}_{a} is a unit vector that defines the direction of aa' axis

$$
M_{A}=u_{a} \cdot(\mathbf{r} \times \mathbf{F})
$$

Vector Analysis

M_{a} can also be obtained as

$$
M_{a}=\mathbf{u}_{a} \cdot(\mathbf{r} \times \mathbf{F})=\left|\begin{array}{ccc}
u_{a_{x}} & u_{a_{y}} & u_{a_{z}} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

u_{a} represents the unit vector along the a-axis, r is the position vector from any point on the a axis to any point A on the line of action of the force, and
F is the force vector.

Vector Analysis

- Determine the component of \mathbf{M}_{0} about the y axis, $\mathbf{M}_{\mathbf{y}}$ since this component tend to unscrew the pipe from the flange at 0

$$
\begin{aligned}
\mathbf{M}_{\mathrm{O}} & =\mathbf{r}_{\mathrm{A}} \times \mathbf{F} \\
& =(0.3 \mathbf{i}+0.4 \mathbf{j}) \times(-20 \mathbf{k}) \\
& =\{-8 \mathbf{i}+6 \mathbf{j}\} \mathrm{N} . \mathrm{m}
\end{aligned}
$$

Since unit vector for this axis is $\mathbf{u}_{\mathrm{a}}=\mathbf{j}$,
$M_{y}=\mathbf{M}_{0} . \mathbf{u}_{\mathrm{a}}$
$=(-8 \mathbf{i}+6 \mathbf{j}) \cdot \mathbf{j}=6 \mathrm{~N} . \mathrm{m}$

Moment of a Force about specified axis

Scalar

- MOF about any point O is
- $M_{0}=F d_{0}$
- Now finding moment about an axis using
- $M_{\mathrm{a}}=F d_{\mathrm{a}}$
- d_{a} is the perpendicular or shortest distance from the force line of action to the axis (any specified axis aa)
- No moment about a specified axis if the force line of action is parallel or passes through the axis

- MOF about any arbitrary point O is
- $M_{o}=r \times F$
- Now find the moment along the a-axis using the dot product
- $M_{a}=u_{a} \cdot M_{o}$
- $M_{a}=u_{a} \bullet(r \times F)$ (triple product)
- u_{a} Defines the direction of the axis
- r is directed from any point on the axis to any point on the line of action of the force
- Sign of scalar indicates the direction of M_{a} (if +ve, M_{a} has same sense as u_{a}, if -ve, M_{a} act opposite to u_{a}

Application (Scalar analysis)

- The moment about the y-axis would be
- $M_{y}=F_{z}\left(d_{x}\right)=F(r \cos \theta)$
- If force can easily be broken into components and the " d_{x} " found quickly
- such calculations are not always trivial and vector analysis may be much easier (and less likely to produce errors)

Application

With the force P, a person is creating a moment M_{A} using this flex-handle socket wrench. Does all of M_{A} act to turn the socket? How would you calculate an answer to this question?

Application

Sleeve A of this bracket can provide a maximum resisting moment of $125 \mathrm{~N} \cdot \mathrm{~m}$ about the x-axis. How would you determine the maximum magnitude of F before turning about the x-axis occurs?

Example 4.11

A force is applied to the tool as shown. Determine the magnitude of the moment of this force about the x axis of the value.

1) Use $\mathrm{M}_{\mathrm{z}}=u \bullet(r \times \boldsymbol{F})$
2) First, write \boldsymbol{F} in Cartesian vector form
3) Note that $u=1 i$ in this case
4) The vector r is the position vector from O to A

Solution Example 4.11

$$
\begin{aligned}
& u=1 i \\
& \begin{aligned}
& r_{O A}=\{0 i+0.3 j+0.25 k\} \mathrm{m} \\
& F=200(\cos 120 i+\cos 60 j
\end{aligned} \\
& \quad \quad+\cos 45 k) \mathrm{N} \\
& =
\end{aligned}
$$

Now find $M_{z}=u \bullet\left(r_{O A} \times F\right)$

$$
M_{2}=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.3 & 0.25 \\
-100 & 100 & 141.4
\end{array}\right|=1\{0.3(141.4)-0.25(100)\} \mathrm{N} \cdot \mathrm{~m}
$$

$$
\mathrm{M}_{\mathrm{z}}=17.4 \mathrm{~N} \cdot \mathrm{~m} \mathrm{CCW}
$$

Example 4.12

The force of $\mathrm{F}=30 \mathrm{~N}$ acts on the bracket.

$$
\alpha=60^{\circ}, \beta=60^{\circ}, \gamma=45^{\circ}
$$

Determine the moment of \boldsymbol{F} about the a-a axis.

Solution Example 4.12

$$
\begin{aligned}
& u_{a}=j \\
& r_{O A}=\{-0.1 i+0.15 k\} \mathrm{m}
\end{aligned}
$$

$F=30\left\{\cos 60^{\circ} i+\cos 60^{\circ} j+\right.$ $\left.\cos 45^{\circ} \mathrm{k}\right\} \mathrm{N}$
$F=\{15 i+15 j+21.21 k\} N$

Solution Example 4.12

Now find the triple product, $\mathrm{M}_{a}=u_{a} \bullet\left(r_{O A} \times \boldsymbol{F}\right)$

$M_{a}=|$| 0 | 1 | 0 |
| :---: | :---: | :---: |
| -0.1 | 0 | 0.15 |
| 15 | 15 | 21.21 |

$$
\mathrm{N} \cdot \mathrm{~m}
$$

$$
\mathrm{M}_{a}=-1\{-0.1(21.21)-0.15(15)\}
$$

$$
=4.37 \mathrm{~N} \cdot \mathrm{~m}
$$

Example 4.13

The force $\mathbf{F}=\{-40 \mathbf{i}+20 \mathbf{j}+10 \mathbf{k}\} \mathrm{N}$ acts on the point A. Determine the moments of this force about the x and a axes

Solution Example 4.13

Method 1

$$
\begin{aligned}
& \vec{r}_{A}=\{-3 \vec{i}+4 \vec{j}+6 \vec{k}\} m \\
& \vec{u}_{x}=\vec{i}
\end{aligned}
$$

$$
\left|\vec{M}_{x}\right|=\vec{i} \cdot\left(\vec{r}_{A} X \vec{F}\right)=\left|\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 4 & 6 \\
-40 & 20 & 10
\end{array}\right|
$$

$$
=-80 N . m
$$

Negative sign indicates that sense of $\mathbf{M}_{\mathbf{x}}$ is opposite to \mathbf{i}

Solution Example 4.13

We can also compute M_{a} using \mathbf{r}_{A} as \mathbf{r}_{A} extends from a point on the a axis to the force

$$
\begin{aligned}
& \vec{u}_{A}=-3 / 5 \vec{i}+4 / 5 \vec{j} \\
& \left|\vec{M}_{a}\right|=\vec{u}_{A} \cdot\left(\vec{r}_{A} X \vec{F}\right)=\left|\begin{array}{ccc}
-3 / 5 & 4 / 5 & 0 \\
-3 & 4 & 6 \\
-40 & 20 & 10
\end{array}\right| \\
& =-120 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

Solution Example 4.13

Method 2

- Only 10 N and 20 N forces contribute moments about the x axis
- Line of action of the 40 N is parallel to this axis and thus, moment $=0$
- Using right hand rule

$$
\begin{aligned}
& M_{x}=(10 \mathrm{~N})(4 \mathrm{~m})-(20 \mathrm{~N})(6 \mathrm{~m})=-80 \mathrm{~N} . \mathrm{m} \\
& M_{y}=(10 \mathrm{~N})(3 \mathrm{~m})-(40 \mathrm{~N})(6 \mathrm{~m})=-210 \mathrm{~N} . \mathrm{m} \\
& M_{z}=(40 \mathrm{~N})(4 \mathrm{~m})-(20 \mathrm{~N})(3 \mathrm{~m})=100 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

Example 4.14

The rod is supported by two brackets at A and B. Determine the moment $\mathbf{M}_{A B}$ produced by $\mathbf{F}=\{-600 \mathbf{i}+200 \mathbf{j}-300 \mathbf{k}\} \mathrm{N}$, which tends to rotate the rod about the $A B$ axis.

Solution Example 4.14

Vector analysis chosen as moment arm from line of action of \mathbf{F} to the $A B$ axis is hard to determine

- For unit vector defining direction of $A B$ axis of the rod,
- For simplicity, choose \mathbf{r}_{D}

$$
\begin{aligned}
& \left|\vec{M}_{A B}\right|=\vec{u}_{B} \cdot(\vec{r} X \vec{F}) \\
& \vec{u}_{B}=\frac{\vec{r}_{B}}{\left|\vec{r}_{B}\right|}=\frac{0.4 \vec{i}+0.2 \vec{j}}{\sqrt{(0.4)^{2}+(0.2)^{2}}} \\
& =0.894 \vec{i}+0.447 \vec{j}
\end{aligned}
$$

Solution Example 4.14

- For force,
$\vec{F}=\{-600 \vec{i}+200 \vec{j}-300 \vec{k}\} N$
- In determinant form,

$$
\begin{aligned}
& \left|\vec{M}_{A B}\right|=\vec{u}_{B} \cdot\left(\vec{r}_{D} X \vec{F}\right)=\left|\begin{array}{ccc}
0.894 & 0.447 & 0 \\
0 & 0.2 & 0 \\
-600 & 200 & -300
\end{array}\right| \\
& =-53.67 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

Negative sign indicates $\mathbf{M}_{A B}$ is opposite to \mathbf{u}_{B}

Solution Example 4.14

- In Cartesian form,

$$
\begin{aligned}
& \vec{M}_{A B}=\left|\vec{M}_{A B}\right| \vec{u}_{B}=(-53.67 \mathrm{~N} . \mathrm{m})(0.894 \vec{i}+0.447 \vec{j}) \\
& =\{-48.0 \vec{i}-24.0 \vec{j}\} \mathrm{N} . \mathrm{m}
\end{aligned}
$$

*Note: if axis $A B$ is defined using unit vector directed from B towards A, the above formulation $-\mathbf{u}_{\mathrm{B}}$ should be used.

$$
\mathbf{M}_{A B}=M_{A B}\left(-\mathbf{u}_{B}\right)
$$

Conclusion of The Chapter 4

- Conclusions
- The Principle Moment has been identified
- The triple product vector have been implemented to solve Moment problems in specified axis

Credits to:

Dr Nurul Nadhrah Bt Tukimat nadrah@ump.edu.my

En Khalimi Johan bin Abd Hamid khalimi@ump.edu.my

Roslina binti Omar rlina@ump.edu.my

