ENGINEERING MECHANICS BAA1113

TUTORIAL 3 (CO2)

by
Pn.Rokiah Bt Othman
Faculty of Civil Engineering \& Earth Resources
nadrah@ump.edu.my

TUTORIAL 3

T1) The cords ABC and BD can each support a maximum load of 100 lb . Determine the maximum weight of the crate and the angle θ for equilibrium

TUTORIAL 3

T2) The bearing consists of rollers, symmetrically confined within the housing. The bottom one is subjected to a 125 N force at its contact A due to the load on the shaft. Determine the normal reactions N_{B} and N_{C} on the bearing at its contact points B and C for equilibrium

$$
\text { ans: } \mathrm{N}_{\mathrm{B}}=105 \mathrm{~N} \text { and } \mathrm{N}_{\mathrm{C}}=163 \mathrm{~N}
$$

TUTORIAL 3

T3) Determine the maximum force \mathbf{F} that can be supported in the position shown if each chain can support a maximum tension of 600 lb before it fails

ans: $\mathrm{T}_{\mathrm{AB}}=0.625 \mathrm{~F}, \mathrm{~T}_{\mathrm{AC}}=0.4910 \mathrm{~F}, \mathrm{~F}=9601 \mathrm{~b}$

TUTORIAL 3

T4) The lift sling is used to hoist a container having a mass of 500 kg . Determine the force in each of the cables AB and AC as a function of θ. If the maximum tension allowed in each cable is 5 kN , determine the shortest lengths of cables AB and AC that can be used for the lift. The center of gravity of the container is located at G

$$
\text { ans: } \mathrm{F}_{\mathrm{AC}}=\mathrm{F}_{\mathrm{AB}}=\mathrm{F}=\{2.45 \cos \theta\} \mathrm{kN}, l=1.72 \mathrm{~m}
$$

TUTORIAL 3

T5) Determine the stretch in each spring for equilibrium of the 2 kg block. The springs are shown in the equilibrium position

ans: $\mathrm{F}_{\mathrm{AC}}=15.86 \mathrm{~N}, s=0.793 \mathrm{~m}, \mathrm{~F}_{\mathrm{AB}}=14.01 \mathrm{~N}, s=0.467 \mathrm{~m}$,

TUTORIAL 3

T6) The upstretched length of spring AB is 3 m . If the block is held in the equilibrium position shown, determine the mass of the block at D

ans: $\mathrm{T}=67.88 \mathrm{~N}, \mathrm{~W}=84 \mathrm{~N}, \mathrm{~m}=8.56 \mathrm{~kg}$

TUTORIAL 3

T7) The spring BA and BC each have a stiffness of $500 \mathrm{~N} / \mathrm{m}$ and an unstretched length of 3 m . Determine the horizontal force \mathbf{F} applied to the cord which is attached to the small ring B so that the displacement of the ring from the wall is $d=$ 1.5 m

$$
\text { ans: } \mathrm{T}=177.05 \mathrm{~N}, \mathrm{~F}=158 \mathrm{~N}
$$

TUTORIAL 3

T8) Each cord can sustain a maximum tension of 500 N . Determine the largest mass of pipe that can be supported

$$
\text { ans: } \mathrm{W}=261.69 \mathrm{~N}, \mathrm{~m}=26.7 \mathrm{~kg}
$$

TUTORIAL 3

T9) The three cables are used to support the 40 kg flower pot. Determine the force developed in each cable for equilibrium

$$
\text { ans: } \mathrm{F}_{\mathrm{AD}}=763 \mathrm{~N}, \mathrm{~F}_{\mathrm{AC}}=392 \mathrm{~N}, \mathrm{~F}_{\mathrm{AB}}=532 \mathrm{~N}
$$

TUTORIAL 3

T10) The three cables are used to support the 25 kg flower pot. Determine the force developed in each cable for equilibrium

ans: $\mathrm{F}_{\mathrm{AD}}=\mathrm{F}_{\mathrm{AC}}=104 \mathrm{~N}, \mathrm{~F}_{\mathrm{AB}}=220 \mathrm{~N}$

TUTORIAL 3

T11) Determine the tension developed in the three cables required to support the traffic light, which has a mass of 15 kg . Take $\mathrm{h}=4 \mathrm{~m}$

TUTORIAL 3

T12) The crate has a mass of 130 kg . Determine the tension developed in the three cables.

ans: $\mathrm{F}_{\mathrm{AD}}=1.56 \mathrm{kN}, \mathrm{F}_{\mathrm{BD}}=521 \mathrm{~N}, \mathrm{~F}_{\mathrm{CD}}=1.28 \mathrm{k} \mathrm{N}$

