

ENGINEERING MECHANICS BAA1113

TUTORIAL 2 (CO2)

by Rokiah Bt Othman Faculty of Civil Engineering & Earth Resources nadrah@ump.edu.my

T1) Determine the magnitude of the resultant force and its direction (measured counterclockwise from the positive x axis). Given F = 450 N and $\theta = 60^{\circ}$

ans:
$$F_R = 497 \text{ N}$$
, $\phi = 155^{\circ}$

T2) Determine the magnitude of the force F and its direction. Given $F_R = 500$ and directed along the positive y axis

ans: F = 960 N,
$$\theta = 45.2^{\circ}$$

T3) Determine the magnitude of the resultant force and its direction (measured clockwise from the positive u axis). $F_R = F_{1+} F_2$

ans:
$$F_R = 8.03 \text{ kN}$$
 , $\phi = 1.22^\circ$

T4) The plate is subjected to the two forces at A and B as shown. Determine the magnitude of the resultant force and its direction (measured clockwise from the horizontal axis). Given $\theta = 60^{\circ}$

T5) Determine the angle of θ which connecting member A to the plate so that the resultant force of F_A and F_B is directed horizontally to the right. Also, determine the magnitude of the resultant force

ans:
$$\theta = 54.9^{\circ} F_{R} = 10.4 \text{ kN}$$

T6) Determine the magnitude of the resultant force and its direction (measured counterclockwise from the positive x axis)

ans:
$$F_R = 257 \text{ kN}$$
, $\phi = 163^\circ$

T7) Resolve each force acting on the gusset plate into its x and y components, and express each force as a Cartesian vector

ans: $F_1 = \{900i\} N$ $F_2 = \{530i + 530j\} N$ $F_3 = \{520i - 390j\} N$

T8) Determine the magnitude of the resultant force and its direction (measured counterclockwise from the positive x axis)

ans:
$$F_R = 1.96 \text{ kN}$$
 , $\theta = 4.12^\circ$

T9) The bolt is subjected to the force F, which has components acting along the x,y,z axes as shown. If the magnitude of F is 80N and $\alpha = 60^{\circ}$ and $\gamma = 45^{\circ}$, determine the magnitude of its componets. (F_X,F_Y,F_Z)

ans: $F_X = 40 \text{ N}, F_Y = 40 \text{ N}, F_Z = 56.6 \text{ N}$

T10) Determine the magnitude and coordinate direction angles of the force F acting on the support. The component F in the x-y plane is 7 kN

ans: F = 8.08 kN

T11) The mast is subjected to the three forces. Determine the coordinate direction angles of F_1 so that the force acting on the mast is $F_R = \{350i\}$ N

$$\alpha = \cos^{-1} (F_{Rx} / F_{R}) = \frac{45.6^{\circ}}{45.6^{\circ}}$$

$$\beta = \cos^{-1} (F_{Ry} / F_{R}) = \frac{53.1^{\circ}}{53.1^{\circ}}$$

$$\gamma = \cos^{-1} (F_{Rz} / F_{R}) = \frac{66.4^{\circ}}{100}$$

T12) The mast is subjected to the three forces. Determine the coordinate direction angles of F_1 so that the force acting on the mast is zero. $F_R = 0$ N

$$\alpha = \cos^{-1} (F_{Rx} / F_{R}) = \underline{90^{\circ}}$$

$$\beta = \cos^{-1} (F_{Ry} / F_{R}) = \underline{53.1^{\circ}}$$

$$\gamma = \cos^{-1} (F_{Rz} / F_{R}) = \underline{66.4^{\circ}}$$

T13) Determine the magnitude of the resultant force and its direction

$$\alpha = 72.1^{\circ}$$

 $\beta = 82.5^{\circ}$
 $\gamma = 19.5^{\circ}$

T14) The 8 m long cable is anchored to the ground at A. If the x=4m and y=2m, determine the coordinate z to the highest point of attachment along the column

ans: z = 6.63 m

T15) The three supporting cables exert the forces shown on the signboard. Represent each force in Cartesian Vector

T16) Determine the magnitude of the projection force .

ans: $F_{\rm U} = 246 \text{ N}$

T17) Determine the angle θ between BA and BC

ans: $\theta = 142^{\circ}$

T18) Determine the magnitude of the projected component of the 3 kN force acting along the axis BC of the pipe

ans: |F.UBC| = 0.182 kN