ENGINEERING MECHANICS BAA1113

TUTORIAL 2 (CO2)

by
Rokiah Bt Othman
Faculty of Civil Engineering \& Earth Resources nadrah@ump.edu.my

TUTORIAL 2

T1) Determine the magnitude of the resultant force and its direction (measured counterclockwise from the positive x axis). Given $F=450 \mathrm{~N}$ and $\theta=60^{\circ}$

$$
\text { ans: } \mathrm{F}_{\mathrm{R}}=497 \mathrm{~N}, \phi=155^{\circ}
$$

TUTORIAL 2

T2) Determine the magnitude of the force F and its direction.
Given $\mathrm{F}_{\mathrm{R}}=500$ and directed along the positive y axis

ans: $\mathrm{F}=960 \mathrm{~N}, \theta=45.2^{\circ}$

TUTORIAL 2

T3) Determine the magnitude of the resultant force and its direction (measured clockwise from the positive u axis). $\mathrm{F}_{\mathrm{R}}=\mathrm{F}_{1+} \mathrm{F}_{2}$

ans: $\mathrm{F}_{\mathrm{R}}=8.03 \mathrm{kN}, \phi=1.22^{\circ}$

TUTORIAL 2

T4) The plate is subjected to the two forces at A and B as shown. Determine the magnitude of the resultant force and its direction (measured clockwise from the horizontal axis). Given $\theta=60^{\circ}$

$$
\text { ans: } \mathrm{F}_{\mathrm{R}}=10.8 \mathrm{kN}, \phi=31.6^{\circ}
$$

TUTORIAL 2

T5) Determine the angle of θ which connecting member A to the plate so that the resultant force of F_{A} and F_{B} is directed horizontally to the right. Also, determine the magnitude of the resultant force

TUTORIAL 2

T6) Determine the magnitude of the resultant force and its direction (measured counterclockwise from the positive x axis)

ans: $\mathrm{F}_{\mathrm{R}}=257 \mathrm{kN}, \phi=163^{\circ}$

TUTORIAL 2

T7) Resolve each force acting on the gusset plate into its x and y components, and express each force as a Cartesian vector

$$
\text { ans: } \begin{aligned}
\mathrm{F}_{1} & =\{900 \mathbf{i}\} \mathrm{N} \\
\mathrm{~F}_{2} & =\{530 \mathbf{i}+530 \mathbf{j}\} \mathrm{N} \\
\mathrm{~F}_{3} & =\{520 \mathbf{i}-390 \mathbf{j}\} \mathrm{N}
\end{aligned}
$$

TUTORIAL 2

T8) Determine the magnitude of the resultant force and its direction (measured counterclockwise from the positive x axis)

ans: $\mathrm{F}_{\mathrm{R}}=1.96 \mathrm{kN}, \theta=4.12^{\circ}$

TUTORIAL 2

T9) The bolt is subjected to the force F , which has components acting along the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes as shown. If the magnitude of F is 80 N and $\alpha=60^{\circ}$ and $\gamma=$ 45°, determine the magnitude of its componets. $\left(\mathrm{F}_{\mathrm{X}}, \mathrm{F}_{\mathrm{Y}}, \mathrm{F}_{\mathrm{Z}}\right)$

ans: $\mathrm{F}_{\mathrm{X}}=40 \mathrm{~N}, \mathrm{~F}_{\mathrm{Y}}=40 \mathrm{~N}, \mathrm{~F}_{\mathrm{Z}}=56.6 \mathrm{~N}$

TUTORIAL 2

T10) Determine the magnitude and coordinate direction angles of the force F acting on the support. The component F in the $x-y$ plane is 7 kN

$$
\text { ans: } \mathrm{F}=8.08 \mathrm{kN}
$$

$$
\begin{aligned}
& \alpha=48.4^{\circ} \\
& \beta=124^{\circ} \\
& \gamma=60^{\circ}
\end{aligned}
$$

TUTORIAL 2

T11) The mast is subjected to the three forces. Determine the coordinate direction angles of F_{1} so that the force acting on the mast is $F_{R}=\{350 i\} N$

$$
\begin{aligned}
& \alpha=\cos ^{-1}\left(F_{R x} / F_{R}\right)=\underline{45.6^{\circ}} \\
& \beta=\cos ^{-1}\left(F_{R y} / F_{R}\right)=\underline{53.1^{\circ}} \\
& \gamma=\cos ^{-1}\left(F_{R z} / F_{R}\right)=\underline{66.4^{\circ}}
\end{aligned}
$$

TUTORIAL 2

T12) The mast is subjected to the three forces. Determine the coordinate direction angles of F_{1} so that the force acting on the mast is zero. $\mathrm{F}_{\mathrm{R}}=0 \mathrm{~N}$

$$
\begin{aligned}
& \alpha=\cos ^{-1}\left(F_{R x} / F_{R}\right)=\underline{90^{\circ}} \\
& \beta=\cos ^{-1}\left(F_{R y} / F_{R}\right)=\underline{53.1^{\circ}} \\
& \gamma=\cos ^{-1}\left(F_{R z} / F_{R}\right)=\underline{66.4^{\circ}}
\end{aligned}
$$

TUTORIAL 2

T13) Determine the magnitude of the resultant force and its direction

$$
\text { ans: } \mathrm{F}_{\mathrm{R}}=407 \mathrm{~N}
$$

$$
\begin{aligned}
& \alpha=72.1^{\circ} \\
& \beta=82.5^{\circ} \\
& \gamma=19.5^{\circ}
\end{aligned}
$$

TUTORIAL 2

T14) The 8 m long cable is anchored to the ground at A. If the $x=4 \mathrm{~m}$ and $\mathrm{y}=2 \mathrm{~m}$, determine the coordinate z to the highest point of attachment along the column

ans: $\mathrm{z}=6.63 \mathrm{~m}$

TUTORIAL 2

T15) The three supporting cables exert the forces shown on the signboard. Represent each force in Cartesian Vector

ans: $F_{C}=\{-324 \mathbf{i}-130 \mathbf{j}+195 \mathbf{k}\} N$

$$
\begin{aligned}
& F_{B}=\{-324 \mathbf{i}+130 \mathbf{j}+195 \mathbf{k}\} N \\
& F_{E}=\{-194 \mathbf{i}+291 \mathbf{k}\} N
\end{aligned}
$$

TUTORIAL 2

T16) Determine the magnitude of the projection force .

ans: $\mathrm{F}_{\mathrm{U}}=246 \mathrm{~N}$

TUTORIAL 2

T17) Determine the angle θ between BA and BC

ans: $\theta=142^{\circ}$

TUTORIAL 2

T18) Determine the magnitude of the projected component of the 3 kN force acting along the axis BC of the pipe

ans: $|F . U B C|=0.182 \mathrm{kN}$

