

CHAPTER 1 SIGNAL & NOISE

Expected Outcomes

Able to differentiate between signal and noise Describe the source of noise Explain the way to minimize the noise and enhance the signal

1.1 Signal & Noise

- Sample response : the instrument's response when the analyte is present
- Blank response : the instrument's response when the analyte is absent
- Signal = Sample response Blank response
- Ideally, blank = 0 ; but never!
- Ideally, baseline is constant in time
- Drift = baseline changes slowly with time

Noise

- Random time-dependent change in the instrument's output signal that is unrelated to the analyte response
- These variations make the accuracy lower
- Difference sources of noise
- Important to measure for the detection limit

Signal to Noise ratio (S/N)

- Comparison between desired signal level and noise level
- Noise is independent of signal intensity
- Indicator for noise level
- S/N = (mean)/(std deviation) = x/s = 1/RSD
- S/N = 1 ; means signal = noise (useless info)
- S/N minimum at 3

1.2 Sources of Noise

- Chemical Noise
 - Uncontrollable variables that affect the chemistry of the system under investigation
 - Variations in temperature, pressure, humidity, vibrations
- Instrumental Noise (associated with components of instruments)
 - Thermal or Johnson noise
 - Shot noise
 - Flicker noise
 - Environmental noise

Thermal Noise

- Caused by the thermal agitation of electrons or charge carriers in resistor, capacitor or resistive elements in instrument
- Charge inhomogeneities creates voltage fluctuation
- Present even at zero current
- RMS of noise voltage :

$$v_n = \sqrt{4k_B T R \Delta f}.$$

- Bandwidth lower ; thermal noise lower
- BUT bandwidth lower ; instrument slower in responding to signal ; more time for measurement
- Lower R ; lower thermal noise
- Lower T ; lower thermal noise

Shot Noise

• Electrons or charge particles cross pn junction

$$\sigma_i = \sqrt{2 \, q \, I \, \Delta f}$$

• Can be minimized by lowering bandwidth

Flicker Noise

- Inversely proportional to the frequency signal (1/f)
- Frequency dependence; significant at lower frequency

Environmental Noise

- Noise from surroundings
- Caused by the conductors in instruments; they act as antenna for picking up electromagnetic radiation and convert to electrical signal

1.3 Signal to Noise Enhancement

- Hardware
 - Grounding/Shielding
 - Filter
 - Chopping
 - Lock-in amplifier
 - Modulation

Software

- Ensemble averaging
- Boxcar averaging
- Digital filtering
- Correlation methods

Ensemble Averaging

- Successive sets of data stored in memory as array
- Summed up point by point (co-addition)
- Data are averaged
- WHY ensemble averaging can increase the S/N ratio? Explain from mathematical formulas.

Ensemble Averaging

Picture taken from Fundamentals of Analytical Chemistry by Douglas A. Skoog, Donald M. West and F. James Holler Page 118]

Boxcar Averaging

- Smoothing irregularities
- Assume that irregularities are the result of noise
- Assume that the analog analytical signal varies only slowly with time and the average small number of adjacent points is better measure of the signal than individual points
- Drawbacks: detail is lost ; cannot be used for signal changes rapidly with time

Boxcar Averaging

Picture taken from Fundamentals of Analytical Chemistry by Douglas A. Skoog, Donald M. West and F. James Holler Page 119]

Digital Filtering

- Ensemble averaging
- Fourier transformation
- Least-squares polynomial smoothing
- Correlation

Fourier Transformation

Picture taken from Fundamentals of Analytical Chemistry by Douglas A. Skoog, Donald M. West and F. James Holler Page 121]

Least-squares Polynomial Smoothing

Picture taken from Fundamentals of Analytical Chemistry by Douglas A. Skoog, Donald M. West and F. James Holler Page 121]

