ENGINEERING MECHANICS BAA1113

Chapter 2: Force Vectors (Static)

by
Pn Rokiah Bt Othman
Faculty of Civil Engineering \& Earth Resources
rokiah@ump.edu.my

Chapter Description

- Aims
- To review the Parallelogram Law and Trigonometry
- To explain the Force Vectors
- To explain the Vectors Operations (Parlaw \& Cartesian)
- To express force and position in Cartesian Vectors
- Expected Outcomes
- Able to solve the problems of force and position vectors in the mechanics applications by using Cartesian Coordinate System
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

Chapter Outline

2.1 Scalars and Vectors - part I
2.2 Vectors Operations - part I
2.3 Vectors Addition of Forces - part I
2.4 Cartesian Vectors - part II
2.5 Force and Position Vectors - part III

2.5 Position Vector

- $\quad \mathbf{B}$ is the ending point and \mathbf{A} is the starting point
- Must subtract the tail coordinates from the tip

What is Position Vector?

- It is a fixed vector that locates a point in space relative to another point
- A Position can be defined by its coordinate in 3-D space
- A Position vector directed from A to B is denoted as $r_{A B}$
- Let point $A\left(X_{A}, Y_{A}, Z_{A}\right)$ and $B\left(X_{B}, Y_{B}, Z_{B}\right)$

$$
r_{A B}=\left\{\left(\mathrm{X}_{\mathrm{B}}-\mathrm{X}_{\mathrm{A}}\right) i+\left(\mathrm{Y}_{\mathrm{B}}-\mathrm{Y}_{\mathrm{A}}\right) j+\left(\mathrm{Z}_{\mathrm{B}}-\mathrm{Z}_{\mathrm{A}}\right) k\right\} \mathrm{m}
$$

Application of Position Vector

Measure the length of cable

 ABMagnitude r represent the length of cable

Position vector r can be established

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

Measure the direction of cable $A B$

Angles α, β, γ represent the direction of cable $A B$

Force Vector Directed Along a Line

If a force is directed along a line

- It can represent the force vector in Cartesian coordinates by using a unit vector and the force's magnitude
- Step 1: Established position vector $r_{A B}$
- Step 2: Established unit vector $u_{A B}=\left(r_{A B} r_{A B)}\right.$
- Step 3: Magnitude of force $F=F u_{A B}$

Example 2.12

The elastic rubber band is attached to points A and B . Determine the length and direction measured from A to B

(a)

Step 1 - Established position vector $r_{A B}$

Step 2 • Established unit vector $u_{A B}=\left(r_{A B /} r_{A B)}\right.$

Magnitude $r_{A B}=$ length of the rubber band

Step 3
Direction $=$ coordinate angles of $r_{A B}$

$$
u_{A B}=\cos \alpha i+\cos \beta j+\cos \gamma k
$$

Solution Example 2.12

The elastic rubber band is attached to points A and B . Determine the length and direction measured from A to B

(a)

- Established position vector $r_{A B}$
- From A to B, it's need to go -3 m in the x direction, 2 m in the y -direction, and 6 m in the z-direction

$$
r_{A B}=\{-3 i+2 j+6 k\} m
$$

or
-point $A\left(X_{A}, Y_{A}, Z_{A}\right)$ and $B\left(X_{B}, Y_{B}, Z_{B}\right)$
-point $A(1,0,-3)$ and $B(-2,2,3)$

$$
r_{A B}=\left\{\left(\mathrm{X}_{\mathrm{B}}-\mathrm{X}_{\mathrm{A}}\right) i+\left(\mathrm{Y}_{\mathrm{B}}-\mathrm{Y}_{\mathrm{A}}\right) j+\left(\mathrm{Z}_{\mathrm{B}}-\mathrm{Z}_{\mathrm{A}}\right) k\right\} \mathrm{m}
$$

$$
r_{A B}=\{(-2-1) i+(2-0) j+(3-(-3)) k\} m
$$

$$
r_{A B}=\{(-3) i+(2) j+(6) k\} m
$$

Solution Example 2.12

The elastic rubber band is attached to points A and B . Determine the length and direction measured from A to B

Step 2

- Established unit vector $u_{A B}=\left(r_{A B /} r_{A B)}\right.$

$$
r_{A B}=\sqrt{(-3)^{2}+(2)^{2}+(6)^{2}}=7 m
$$

Magnitude $=$ length of the rubber band $=7 \mathrm{~m}$

$$
\left.\left.u_{A C}=(-3 / 7) i+(2 / 7) j+(6 / 7) k\right)\right\} N
$$

$$
\left.\left.u_{A C}=-0.428 i+0.285 j+0.857 k\right)\right\} \mathrm{N}
$$

- Direction A to B

$$
\begin{aligned}
& u_{A B}=\cos \alpha i+\cos \beta j+\cos \gamma k \\
& \alpha=\cos ^{-1}(-3 / 7)=\underline{115^{\circ}} \\
& \beta=\cos ^{-1}(2 / 7)=\underline{73.4^{\circ}} \\
& \gamma=\cos ^{-1}(6 / 7)=\underline{31^{\circ}}
\end{aligned}
$$

Example 2.13

Determine the force $F_{A C}$ in the Cartesian vectors. Given, the 420 N Force along the cable AC

Solution Example 2.13

Determine the force $F_{A C}$ in the Cartesian vectors. Given, the 420 N Force along the cable AC

Step 1

- Established position vector $r_{A C}$
- From A to C, it's need to go $2 m$ in the x direction, 3 m in the y -direction, and -6 m in the z-direction

$$
r_{A C}=\{2 i+3 j-6 k\} \mathrm{m}
$$

-point $A\left(X_{A}, Y_{A}, Z_{A}\right)$ and $C\left(X_{C}, Y_{C}, Z_{C}\right)$ -point $A(0,0,6)$ and $C(2,3,0)$

$$
r_{A C}=\left\{\left(X_{C}-X_{A}\right) i+\left(Y_{C}-Y_{A}\right) j+\left(Z_{C}-Z_{A}\right) k\right\} m
$$

$$
r_{A C}=\{(2-0) i+(3-0) j+(0-6) k\} m
$$

$$
r_{A C}=\{(2) i+(3) j+(-6) k\} m
$$

Solution Example 2.13

Determine the force F_{AC} in the Cartesian vectors. Given, the 420 N Force along the cable AC

Step 2

- Established unit vector $u_{A C}=\left(r_{A C /} r_{A C)}\right.$

$$
r_{A C}=\sqrt{(2)^{2}+(3)^{2}+(-6)^{2}}=7 m
$$

Step 3 - Magnitude of force $F=F u_{A C}$

$$
F=420 \mathrm{~N} U_{A C}
$$

$$
F_{A C}=420\{(2 i+3 j-6 k) / 7\} \mathrm{N}
$$

$$
F_{A C}=\{\underline{120} i+\underline{180} j-360 k\} \underline{N}
$$

Example 2.14

Two forces are acting on the flag pole which $F_{B}=560 \mathrm{~N}$ and $F_{C}=700 \mathrm{~N}$. Determine the magnitude and coordinate direction angles of the

- Established position vector

$$
\begin{aligned}
& r_{A B} \\
& r_{A C}
\end{aligned}
$$

- Established unit vector

$$
\begin{aligned}
& u_{A B}=\left(r_{A B I} r_{A B}\right) \\
& u_{A C}=\left(r_{A C I} r_{A C}\right)
\end{aligned}
$$

Step 3

- Magnitude of force $F_{A B}=F_{A B} / u_{A B}$

$$
F_{A C}=F_{A C} / u_{A C}
$$

- Add the two forces to get F_{R}
- Calculate the magnitude and direction of F_{R}

Example 2.14

Two forces are acting on the flag pole which $F_{B}=560 \mathrm{~N}$ and $F_{C}=700 \mathrm{~N}$. Determine the magnitude and coordinate direction angles of the

Step 1 - Established position vector

$$
\begin{aligned}
& r_{A B}=\{2 i-3 j-6 k\} m \\
& r_{A C}=\{3 i+2 j-6 k\} m
\end{aligned}
$$

- Established unit vector

$$
\begin{aligned}
u_{A B} & =r_{A B /} r_{A B} \\
r_{A B} & =\sqrt{(2)^{2}+(-3)^{2}+(-6)^{2}}=7 m \\
u_{A C} & =\imath_{A C} r_{A C} \\
r_{A C} & =\sqrt{(3)^{2}+(2)^{2}+(-6)^{2}}=7 m
\end{aligned}
$$

Example 2.14

Two forces are acting on the flag pole which $F_{B}=560 \mathrm{~N}$ and $F_{C}=700 \mathrm{~N}$. Determine the magnitude and coordinate direction angles of the

- Magnitude of force

$$
\begin{aligned}
& F_{A B}=F_{A B} / u_{A B} \\
& F_{A B}=560\left(r_{A B} / r_{A B}\right) \mathrm{N} \\
& F_{A B}=560(2 i-3 j-6 k) / 7 \mathrm{~N} \\
& F_{A B}=(160 i-240 j-480 k) \mathrm{N}
\end{aligned}
$$

$$
F_{A C}=F_{A C} / u_{A C}
$$

$$
\begin{aligned}
& F_{A C}=700\left(r_{A C} / r_{A C}\right) \mathrm{N} \\
& F_{A C}=700(3 i+2 j-6 k) / 7 \mathrm{~N} \\
& F_{A C}=\{300 i+200 j-600 \mathrm{k}\} \mathrm{N}
\end{aligned}
$$

Example 2.14

Two forces are acting on the flag pole which $F_{B}=560 \mathrm{~N}$ and $F_{C}=700 \mathrm{~N}$. Determine the magnitude and coordinate direction angles of the resultant force $\mathbf{F}_{\mathbf{B}}$

Step 3

- Magnitude of F_{R}

$$
\begin{aligned}
& F_{A B}=(160 i-240 j-480 k) \mathrm{N} \\
& F_{A C}=\{300 i+200 j-600 \mathrm{k}\} \mathrm{N} \\
& \begin{aligned}
F_{R} & =F_{A B}+F_{A C} \\
& =\{460 i-40 j-1080 \mathrm{k}\}
\end{aligned}
\end{aligned}
$$

$$
F_{R}=\sqrt{(460)^{2}+(-40)^{2}+(-1080)^{2}}=1174.5 \mathrm{~N}
$$

$$
F_{R}=1175 \mathrm{~N}
$$

- Direction angles of \mathbf{F}_{R}

$$
\begin{aligned}
& \alpha=\cos ^{-1}(460 / 1175)=\underline{66.9^{\circ}} \\
& \beta=\cos ^{-1}(-40 / 1175)=\underline{92.0^{\circ}} \\
& \gamma=\cos ^{-1}(-1080 / 1175)=\underline{157^{\circ}}
\end{aligned}
$$

Dot Product

$i \bullet j=0 \& i \bullet i=1$

- A dot product of vectors A and B can be defined by $\mathbf{A} \cdot \mathbf{B}=\mathrm{AB} \cos \theta$
- Use to determine the angle between two vectors and its magnitude
- Its angle θ is the smallest angle between the two vectors and is always in a range of 0° to 180°
- The result of dot product is a scalar (\pm Number)
- Units of the dot product will be the product of the units of the A and B vectors

$$
\begin{aligned}
A \bullet B & =\left(A_{x} i+A_{y} j+A_{z} k\right) \bullet\left(B_{x} i+B_{y} j+B_{z} k\right) \\
& =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

Application of Dot Product

- The angle formed between two vectors or intersecting lines
$\theta=\cos ^{-1}[(\mathbf{A} \cdot \mathbf{B}) /(A B)]$
$0^{\circ} \leq \theta \leq 180^{\circ}$
Note: if $\mathbf{A} \cdot \mathbf{B}=0, \cos ^{-1} 0=90^{\circ}$,
\mathbf{A} is perpendicular to \mathbf{B}

- The components of a vector parallel and perpendicular to a line
- Component of A parallel or collinear with line aa' is defined by $\mathbf{A}_{\|}$(projection of \mathbf{A} onto the line)

$$
A_{\|}=\mathrm{A} \cos \theta
$$

- If direction of line is specified by unit vector \mathbf{u} ($u=1$),

$$
A_{\|}=\mathrm{A} \cos \theta=\mathbf{A} \cdot \mathbf{u}
$$

Application of Dot Product

- If $A_{\|}$is positive, $\mathbf{A}_{\|}$has a directional sense same as u
- If $A_{\|}$is negative, $\mathbf{A}_{\|}$has a directional sense opposite to u
- $\mathbf{A}_{\|}$expressed as a vector
$\mathbf{A}_{\|}=A \cos \theta \mathbf{u}$
$=(\mathbf{A} \cdot \mathbf{u}) \mathbf{u}$

Application of Dot Product

For component of A perpendicular to line aa'

1. Since $A=A_{\|}+A_{\perp}$,
then $\mathbf{A}_{\perp}=\mathbf{A}-\mathbf{A}_{\|}$
2. $\theta=\cos ^{-1}[(\mathbf{A} \cdot \mathbf{u}) /(A)]$
then $\mathbf{A}_{\perp}=A \sin \theta$
3. If $\mathbf{A}_{\|}$is known, by Pythagorean Theorem

Law of Operation of Dot Product

1. Commutative law

$$
A \cdot B=B \cdot A
$$

2. Multiplication by a scalar

$$
\mathrm{a}(\mathbf{A} \cdot \mathbf{B})=(\mathrm{a} \mathbf{A}) \cdot \mathbf{B}=\mathbf{A} \cdot(\mathrm{a} \mathbf{B})=(\mathbf{A} \cdot \mathbf{B}) \mathrm{a}
$$

3. Distribution law
$\mathbf{A} \cdot(\mathbf{B}+\mathbf{D})=(\mathbf{A} \cdot \mathbf{B})+(\mathbf{A} \cdot \mathbf{D})$

Law of Operation of Dot Product

- Cartesian Vector Formulation
- Dot product of Cartesian unit vectors

$$
\text { Eg: } \mathbf{i} \cdot \mathbf{i}=(1)(1) \cos 0^{\circ}=1 \text { and }
$$

$$
\mathbf{i} \cdot \mathbf{j}=(1)(1) \cos 90^{\circ}=0
$$

- Similarly

$$
\begin{array}{lll}
i \cdot i=1 & j \cdot j=1 & \mathbf{k} \cdot \mathbf{k}=1 \\
\mathbf{i} \cdot \mathbf{j}=0 & \mathbf{i} \cdot \mathbf{k}=1 & \mathbf{j} \cdot \mathbf{k}=1
\end{array}
$$

Law of Operation of Dot Product

- Cartesian Vector Formulation
- Dot product of 2 vectors \mathbf{A} and \mathbf{B}
$\mathbf{A} \cdot \boldsymbol{B}=\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right) \cdot\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right)$

$$
=A_{x} B_{x}(\mathbf{i} \cdot \mathbf{i})+A_{x} B_{y}(\mathbf{i} \cdot \mathbf{j})+A_{x} B_{z}(\mathbf{i} \cdot \mathbf{k})
$$

$$
+A_{y} B_{x}(\mathbf{j} \cdot \mathbf{i})+A_{y} B_{y}(\mathbf{j} \cdot \mathbf{j})+A_{y} B_{z}(\mathbf{j} \cdot \mathbf{k})
$$

$$
+A_{z} B_{x}(\mathbf{k} \cdot \mathbf{i})+A_{z} B_{y}(\mathbf{k} \cdot \mathbf{j})+A_{z} B_{z}(\mathbf{k} \cdot \mathbf{k})
$$

$$
=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

Note: since result is a scalar, be careful of including any unit vectors in the result

Example 2.15

The force are acting on the hook at point A. Determine the angle between the force and the line $A O$, and the magnitude of the projection of force along the line AO

Step 1 - Established position vector $r_{A O}$
$\mathbf{F}=\left.\{-6 \mathbf{i}+9 \mathbf{j}+3 \mathbf{k}\} \mathrm{kN}\right|^{z}$
Step 2 - Established dot product

$$
F \bullet r_{A O}
$$

$$
\theta=\cos ^{-1}\left\{\left(F \bullet r_{A O}\right) /\left(F r_{\mathrm{AO}}\right)\right\}
$$

Step 3

- Magnitude of the projection of force, F_{AO}

$$
F_{A O}=F \cdot u_{A O} \text { or } F \cos \theta
$$

Solution Example 2.15

The force are acting on the hook at point A . Determine the angle between the force and the line AO, and the magnitude of the projection of force along the line AO

Step 1 - Established position vector

$$
\begin{aligned}
r_{A O} & =\{-1 i+2 j-2 k\} \mathrm{m} \\
r_{A O} & =\sqrt{(-1)^{2}+(2)^{2}+(-2)^{2}}=3 m \\
F & =\{-6 i+9 j+3 k\} \mathrm{kN}
\end{aligned}
$$

$$
F=\sqrt{(-6)^{2}+(9)^{2}+(3)^{2}}=11.22 m
$$

- Established dot product $i \bullet j=0 \& i \bullet i=1$

$$
F \bullet r_{A O}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

$$
F \cdot r_{A O}=(-6)(-1)+(9)(2)+(3)(-2)=18 \mathrm{kN} \cdot \mathrm{~m}
$$

$\theta=\cos ^{-1}\left\{\left(F \bullet r_{A O}\right) /\left(F r_{\mathrm{AO}}\right)\right\}$

$$
\theta=\cos ^{-1}\{18 /(11.22 \times 3)\}=\underline{57.67^{\circ}}
$$

Solution Example 2.15

Step 3 - Magnitude of the projection of force, F_{AO}

$$
\mathrm{F}_{\mathrm{AO}}=F \cdot u_{A O} \text { or } \mathrm{F} \cos \theta
$$

$$
u_{A O}=r_{A O} / r_{A O}=(-1 / 3) i+(2 / 3) j+(-2 / 3) k
$$

$$
F_{A O}=F \cdot u_{A O}=(-6)(-1 / 3)+(9)(2 / 3)+(3)(-2 / 3)=\underline{6.00 \mathrm{kN}}
$$

$$
F_{A O}=F \cos \theta=11.22 \cos \left(57.67^{\circ}\right)=6.00 \mathrm{kN}
$$

Example 2.16

The frame is subjected to a horizontal force, $F=\{300 j\}$ at point B. Determine the components of this force parallel and perpendicular to the member AB

(a)

Step 1 - Established position vector u_{B}

Step 2 - Established dot product

$$
F_{A B}=F \cos \theta=F \bullet u_{B}
$$

Express in Cartesian form:

- Parallel component
- Perpendicular componet

$$
\begin{aligned}
\mathbf{A}=\mathbf{A}_{\|} & +\mathbf{A}_{\perp}, \\
& \text { then } \mathbf{A}_{\perp}=\mathbf{A}-\mathbf{A}_{\|}
\end{aligned}
$$

Solution Example 2.16

The frame is subjected to a horizontal force, $F=\{300 j\}$ at point B. Determine the components of this force parallel and perpendicular to the member AB

(a)

(b)

Step 1 Established position \& unit vector

$$
\begin{aligned}
& \vec{u}_{B}=\frac{\vec{r}_{B}}{\left|\vec{r}_{B}\right|}=\frac{2 \vec{i}+6 \vec{j}+3 \vec{k}}{\sqrt{(2)^{2}+(6)^{2}+(3)^{2}}} \\
& =0.286 \vec{i}+0.857 \vec{j}+0.429 \vec{k}
\end{aligned}
$$

$$
\left|\vec{F}_{A B}\right|=|\vec{F}| \cos \theta<\begin{gathered}
\text { Step } 2, \text { dot } \\
\text { product }
\end{gathered}
$$

$$
\begin{aligned}
& =\vec{F} \cdot \vec{u}_{B}=(300 \vec{j}) \cdot(0.286 \vec{i}+0.857 \vec{j}+0.429 \vec{k}) \\
& =(0)(0.286)+(300)(0.857)+(0)(0.429) \\
& =257.1 \mathrm{~N}
\end{aligned}
$$

Solution Example 2.16

The frame is subjected to a horizontal force, $F=\{300 j\}$ at point B. Determine the components of this force parallel and perpendicular to the member AB

Step 3
—y
(a)

Since result is a positive scalar, \mathbf{F}_{AB} has the same sense of direction as \mathbf{u}_{B}.
Express in Cartesian form:

$$
\begin{aligned}
& \vec{F}_{A B}=\left|\vec{F}_{A B}\right| \vec{u}_{A B} \\
& =(257.1 N)(0.286 \vec{i}+0.857 \vec{j}+0.429 \vec{k}) \\
& =\{73.5 \vec{i}+220 \vec{j}+110 \vec{k}\} N
\end{aligned}
$$

Perpendicular component

$$
\begin{aligned}
& \vec{F}_{\perp}=\vec{F}-\vec{F}_{A B}=300 \vec{j}-(73.5 \vec{i}+220 \vec{j}+110 \vec{k}) \\
& =\{-73.5 \vec{i}+80 \vec{j}-110 \vec{k}\} N
\end{aligned}
$$

Solution Example 2.16

The frame is subjected to a horizontal force, $F=\{300 j\}$ at point B. Determine the components of this force parallel and perpendicular to the member AB Step 5

Magnitude can be determined From F_{\perp} or from Pythagorean
Theorem

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{A}=\mathbf{A}_{\|}+\begin{array}{c}
\mathbf{A}_{\perp}, \\
\text { then } \mathbf{A}_{\perp}=\mathbf{A}-\mathbf{A}_{\|}
\end{array} \\
\left|\vec{F}_{\perp}\right|=\sqrt{|\vec{F}|^{2}-\left|\vec{F}_{A B}\right|^{2}} \\
=\sqrt{(300 \mathrm{~N})^{2}-(257.1 \mathrm{~N})^{2}} \\
=155 \mathrm{~N}
\end{array}
\end{aligned}
$$

Example 2.17

The pipe is subjected to force, $\mathbf{F}=\mathbf{8 0 0} \mathbf{N}$ at point B. Determine the angle θ between \mathbf{F} and pipe segment $B A$, and the magnitude of the components of force \mathbf{F}, which are parallel and perpendicular to the member BA

(a)

Solution Example 2.17

For angle θ
$\mathbf{r}_{\mathrm{BA}}=\{-2 \mathbf{i}-2 \mathbf{j}+1 \mathbf{k}\} \mathrm{m}$
$\mathbf{r}_{B C}=\{-3 \mathbf{j}+1 \mathbf{k}\} m$
Thus,
$\cos \theta=\frac{\vec{r}_{B A} \cdot \vec{r}_{B C}}{\left|\vec{r}_{B A}\right|\left|\vec{r}_{B C}\right|}=\frac{(-2)(0)+(-2)(-3)+(1)(1)}{3 \sqrt{10}}$
$=0.7379$
$\theta=42.5^{\circ}$

(b)
$\vec{u}_{A B}=\frac{\vec{r}_{A B}}{\left|\vec{r}_{A B}\right|}=\frac{(-2 \vec{i}-2 \vec{j}+1 \vec{k})}{3}$
$=\left(-\frac{2}{3}\right) \vec{i}+\left(-\frac{2}{3}\right) \vec{j}+\left(\frac{1}{3}\right) \vec{k}$
$\left|\vec{F}_{A B}\right|=\vec{F} \cdot \vec{u}_{B}$
$=(-758.9 \vec{j}+253.0 \vec{k}) \cdot\left(-\frac{2}{3}\right) \vec{i}+\left(-\frac{2}{3}\right) \vec{j}+\left(\frac{1}{3}\right) \vec{k}$
$=0+506.0+84.3$
$=590 \mathrm{~N}$

Solution Example 2.17

Checking from trigonometry,

$$
\left|\vec{F}_{A B}\right|=|\vec{F}| \cos \theta
$$

$$
=800 \cos 42.5^{\circ} \mathrm{N}
$$

$$
=540 \mathrm{~N}
$$

Magnitude can be determined

(b)

From F_{\perp}

$$
\left|\vec{F}_{\perp}\right|=|\vec{F}| \sin \theta=800 \sin 42.5^{\circ}=540 N
$$

Magnitude can be determined from \mathbf{F}_{\perp}

$$
\left|\vec{F}_{ \pm}\right|=\sqrt{|\vec{F}|^{2}-\left|\vec{F}_{A B}\right|^{2}}
$$

or from Pythagorean Theorem
$=\sqrt{(800)^{2}-(590)^{2}}$
$=540 \mathrm{~N}$

Conclusion of The Chapter 2 part III

- Conclusions
- The Force and Position vector have been identified and determined in the mechanics
- The Dot Product has been implemented in determine an angle between two vectors

Credits to:

Dr Nurul Nadhrah Bt Tukimat nadrah@ump.edu.my

En Khalimi Johan bin Abd Hamid khalimi@ump.edu.my

Roslina binti Omar rlina@ump.edu.my

