ENGINEERING MECHANICS BAA1113

Chapter 2: Force Vectors (Static)

by
Pn Rokiah Bt Othman
Faculty of Civil Engineering \& Earth Resources
rokiah@ump.edu.my

Chapter Description

- Aims
- To review the Parallelogram Law and Trigonometry
- To explain the Force Vectors
- To explain the Vectors Operations (Parlaw \& Cartesian)
- To express force and position in Cartesian Vectors
- Expected Outcomes
- Able to solve the problems of force vectors in the mechanics applications by using Cartesian Coordinate System
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

Chapter Outline

2.1 Scalars and Vectors - part I
2.2 Vectors Operations - part I
2.3 Vectors Addition of Forces - part I
2.4 Cartesian Vectors - part II
2.5 Force and Position Vectors - part III

2.4 Cartesian Vector

- It is a coordinate system
- Use to describe position
- Position can be defined by its coordinate axis
- It is a unit vector $u_{A}=A / A$
- Its magnitude is 1 and dimensionless
- It is denoted as $\mathbf{i}, \mathbf{j}, \mathbf{k}$
- \mathbf{i} is a unit vector pointing in the \mathbf{x} direction
- \mathbf{j} is a unit vector pointing in the \mathbf{y} direction
- \mathbf{k} is a unit vector pointing in the \mathbf{z} direction
- +ve direction based on right handed
- It is important in air transport
- Air Traffic controller or pilots must know the location of every aircraft in the sky
- Without the coordinate system, the position or location of aircraft is difficult to know and may lead to aircraft crashes

Application of Cartesian Vector

- Military Service

- Position of any body in the real world

- Location / Geographic /Latitude/longitude

- Mapping Project

Application of Cartesian Vector

$$
F=\mathrm{F}_{\mathrm{x}} i+\mathrm{F}_{\mathrm{y}} j
$$

(b)

$$
F^{\prime}=\mathrm{F}_{\mathrm{x}}^{\prime} i+\left(-\mathrm{F}_{\mathrm{y}}^{\prime}\right) j
$$

Then add them into respective components

$$
\begin{aligned}
F_{R} & =F_{1}+F_{2}+F_{3} \\
& =\mathrm{F}_{1 \mathrm{x}} i+\mathrm{F}_{1 \mathrm{y}} j-\mathrm{F}_{2 \mathrm{x}} i+\mathrm{F}_{2 \mathrm{y}} j+\mathrm{F}_{3 \mathrm{x}} i-\mathrm{F}_{3 \mathrm{y}} j \\
& =\left(\mathrm{F}_{1 \mathrm{x}}-\mathrm{F}_{2 \mathrm{x}}+\mathrm{F}_{3 \mathrm{x}}\right) i+\left(\mathrm{F}_{1 \mathrm{y}}+\mathrm{F}_{2 \mathrm{y}}-\mathrm{F}_{3 \mathrm{y}}\right) j \\
& =\left(\mathrm{F}_{\mathrm{Rx}}\right) i+\left(\mathrm{F}_{\mathrm{Ry}}\right) j
\end{aligned}
$$

Application of Cartesian Vector

How to resolve into components Vector?

$$
\begin{aligned}
& \boldsymbol{F}=\mathrm{F}_{\mathrm{x}} i+\mathrm{F}_{\mathrm{y}} \boldsymbol{j} \\
& \left|\mathrm{~F}_{\mathrm{X}}\right|=\mathrm{F}_{\mathrm{X}}=\mathrm{F} \cos \theta \\
& \left|\mathrm{~F}_{\mathrm{Y}}\right|=\mathrm{F}_{\mathrm{Y}}=\mathrm{F} \sin \theta
\end{aligned}
$$

(a)

The magnitude of F

$$
F=\sqrt{F_{X}^{2}+F_{Y}^{2}}
$$

The direction of F

$$
\theta=\tan ^{-1}\left|\frac{F_{Y}}{F_{X}}\right|
$$

Application of Cartesian Vector

3-D vector

Resolve vector into components

Addition
vector

The vector \boldsymbol{A} can be resolved as

$$
A=\mathrm{A}_{X} i+\mathrm{A}_{Y} j+\mathrm{A}_{Z} k
$$

Given

$$
\begin{aligned}
& A=\mathrm{A}_{\mathrm{X}} i+\mathrm{A}_{\mathrm{Y}} j+\mathrm{A}_{\mathrm{Z}} k \\
& B=\mathrm{B}_{\mathrm{X}} i+\mathrm{B}_{\mathrm{Y}} j+\mathrm{B}_{\mathrm{Z}} k
\end{aligned}
$$

If $A+B=C$
Sum of the vectors A and B can obtained vector C

$$
\mathbf{F}_{R}=\Sigma \mathbf{F}=\Sigma F_{x} \mathbf{i}+\Sigma F_{y} \mathbf{j}+\Sigma F_{z} \mathbf{k}
$$

$$
\begin{aligned}
C & =\left(\mathrm{A}_{X} i+\mathrm{A}_{Y} j+\mathrm{A}_{Z} k\right)+\left(\mathrm{B}_{X} i+\mathrm{B}_{Y} j+\mathrm{B}_{Z} k\right) \\
& =\left(\mathrm{A}_{X}+\mathrm{B}_{X}\right) i+\left(\mathrm{A}_{Y}+\mathrm{B}_{Y}\right) j+\left(\mathrm{A}_{Z}+\mathrm{B}_{Z}\right) k \\
& =C_{X} i+\mathrm{C}_{Y} j+\mathrm{C}_{Z} k
\end{aligned}
$$

Once the vectors are present in Cartesian term, it easy to add or subtract

Application of Cartesian Vector

How to determine magnitude and direction angle in 3-D vector?

It should be noted that in 3-D vector information is given as:

- Magnitude and the coordinate direction angles, or
- Magnitude and projection angles

Magnitude of a Cartesian Vector \boldsymbol{A} in the x - y plane is A^{\prime}

- From the colored triangle,

$$
A=\sqrt{A^{\prime 2}+A_{z}^{2}}
$$

- From the shaded triangle,

$$
A^{\prime}=\sqrt{A_{x}^{2}+A_{y}^{2}}
$$

- The magnitude of the position vector \boldsymbol{A}
-Combining the equations gives magnitude of \mathbf{A}

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

Application of Cartesian Vector

- The direction or orientation of vector A is defined by the angles α, β, and γ
- These angles are measured between the vector and the positive X, Y and Z axes, respectively. Their range of values are from 0° to 180°
- Using trigonometry, "direction cosines" are found using

$$
\cos \alpha=\frac{A_{x}}{A} \quad \cos \beta=\frac{A_{y}}{A} \quad \cos \gamma=\frac{A_{z}}{A}
$$

- These angles are not independent. Its must satisfy the following equation

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

- It can be derived from the coordinate direction angles and the unit vector
- Unit vector of any position vector is

$$
\mathbf{u}_{A}=\frac{\mathbf{A}}{A}=\frac{A_{x}}{A} \mathbf{i}+\frac{A_{y}}{A} \mathbf{j}+\frac{A_{z}}{A} \mathbf{k}
$$

$$
u_{A}=\cos \alpha i+\cos \beta j+\cos \gamma k
$$

Application of Cartesian Vector

- \mathbf{u}_{A} can also be expressed as

$$
\mathbf{u}_{\mathrm{A}}=\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}
$$

How to determine direction angle of Cartesian Vector?

- A expressed in Cartesian vector form:

$$
\begin{aligned}
\mathbf{A} & =A \mathbf{u}_{\mathrm{A}} \\
& =A \cos \alpha \mathbf{i}+A \cos \beta \mathbf{j}+A \cos \gamma \mathbf{k}
\end{aligned}
$$

$$
=A_{x} \mathbf{i}+A_{y} \mathfrak{j}+A_{z} \mathbf{k}
$$

Example 2.5

Determine the X and Y components of F_{1} and F_{2} in Cartesian vectors

(a)

(b)

$$
\begin{aligned}
& F_{1 x}=-200 \sin 30^{\circ} N=-100 N=100 N \leftarrow \\
& F_{1 y}=200 \cos 30^{\circ} N=173 N=173 N \uparrow
\end{aligned}
$$

Cartesian Vector Notation:

$$
\mathbf{F}_{1}=\{-100 \mathbf{i}+173 \mathbf{j}\} \mathbf{N}
$$

Example 2.5

Determine the X and Y components of F_{1} and F_{2} in Cartesian vectors

(a)

(c)

$$
\frac{F_{2 x}}{260 N}=\frac{12}{13}
$$

$$
\begin{aligned}
& 260 N \quad 13 \\
& F_{2 x}=260 N\left(\frac{12}{13}\right)=240 N \longrightarrow \quad F_{2 y}=260 N\left(\frac{5}{13}\right)=100 N \downarrow
\end{aligned}
$$

Cartesian Vector Notation:

$$
F_{2}=\{240 i-100 j\} N
$$

Example 2.6

Determine the magnitude and direction of the resultant force

```
Step 1
```


Resolve the forces into components x and y

Step 2

Then add the respective components to get the resultant forces

Step 3

Calculate the magnitude and direction from the resultant forces

Solution Example 2.6

Step 1

Resolve the forces into components x and y

$$
F_{1}=\{0 i+300 j\} \mathrm{N}
$$

$$
F_{2}=\left\{-450 \cos \left(45^{\circ}\right) i+450 \sin \left(45^{\circ}\right) j\right\} \mathrm{N}
$$

$$
=\{-318.2 i+318.2 j\} \mathrm{N}
$$

$$
F_{3}=\{(3 / 5) 600 i+(4 / 5) 600 j\} \mathrm{N}
$$

$$
=\{360 i+480 j\} \mathrm{N}
$$

Solution Example 2.6

Step 2

- Summing up all the i and j components respectively:

$$
\begin{aligned}
F_{R} & =\{(0-318.2+360) i+(300+318.2+480) j\} N \\
& =\{41.80 i+1098 j\} N
\end{aligned}
$$

Step 3 • Magnitude and direction:

$$
\begin{aligned}
& F_{R}=\left((41.80)^{2}+(1098)^{2}\right)^{1 / 2}=\underline{1099 \mathrm{~N}} \\
& \phi=\tan ^{-1}(1098 / 41.80)=\underline{87.8^{\circ}}
\end{aligned}
$$

Example 2.7

Determine the magnitude and direction of the resultant force

Solution Example 2.7

Step 1

Resolve the forces into components

$$
\begin{aligned}
F_{3}= & \left\{-750 \sin \left(45^{\circ}\right) i+750 \cos \left(45^{\circ}\right) j\right\} \mathrm{N} \\
& \{-530.3 i+530.3 j\} \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
F_{2} & =\left\{-625 \sin \left(30^{\circ}\right) i-625 \cos \left(30^{\circ}\right) j\right\} \mathrm{N} \\
& =\{-312.5 i-541.3 j\} \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
F_{1} & =\{850(4 / 5) i-850(3 / 5) j\} \mathrm{N} \\
& =\{680 i-510 j\} \mathrm{N}
\end{aligned}
$$

Solution Example 2.7

Step 2

- Summing all the i and j components, respectively:

$$
\begin{aligned}
F_{\mathrm{R}} & =\{(680-312.5-530.3) i+(-510-541.3+530.3) j\} \mathrm{N} \\
& =\{-162.8 i-520.9 j\} \mathrm{N}
\end{aligned}
$$

Step 3

- Magnitude and direction (angle):

$$
\mathrm{F}_{\mathrm{R}}=\left((-162.8)^{2}+(-520.9)^{2}\right)^{1 / 2}=546 \mathrm{~N}
$$

$\phi=\tan ^{-1}(520.9 / 162.8)=\underline{72.6^{\circ}}$
From the positive x -axis, $\theta=253^{\circ}$

Example 2.8

Determine the force \mathbf{F} as Cartesian Vector

Resolve the forces into components

$$
\mathbf{F}=F \cos \alpha \mathbf{i}+F \cos \beta \mathbf{j}+F \cos \gamma \mathbf{k}
$$

- Two angles are specified, the third angle is found by

$$
\begin{aligned}
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\
& \cos ^{2} \alpha+\cos ^{2} 60^{\circ}+\cos ^{2} 45^{\circ}=1
\end{aligned}
$$

$\cos \alpha=\sqrt{1-(0.5)^{2}-(0.707)^{2}}= \pm 0.5$

- Two possibilities of $\boldsymbol{\propto}$
$\alpha=\cos ^{-1}(0.5)=60^{\circ} \quad$ or $\quad \alpha=\cos ^{-1}(-0.5)=120^{\circ}$

Solution Example 2.8

By inspection, $\alpha=60^{\circ}$ since F_{x} is in the $+x$ direction
Given $F=200 \mathrm{~N}$

$$
\begin{aligned}
\mathbf{F} & =F \cos \alpha \mathbf{i}+F \cos 6 \mathbf{j}+F \cos \mathbf{\mathbf { k }} \\
& =\left(200 \cos 60^{\circ} \mathrm{N}\right) \mathbf{i}+\left(200 \cos 60^{\circ} \mathrm{N}\right) \mathbf{j}+\left(200 \cos 45^{\circ} \mathrm{N}\right) \mathbf{k}
\end{aligned}
$$

$\mathrm{F}_{\mathrm{x}}=200 \cos 60^{\circ}=100 \mathrm{~N}$
$\mathrm{F}_{\mathrm{y}}=200 \cos 60^{\circ}=100 \mathrm{~N}$
$F_{z}=200 \cos 45^{\circ}=141.4 \mathrm{~N}$
Now F in Cartesian term :
$F=\{100 i+100 j+141.4 k\} N$

Example 2.9

Determine the magnitude and coordinate direction of the resultant force acting on the ring

(a)

Solution Example 2.9

$\mathbf{F}_{\mathrm{R}}=\sum \mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}$
$=\{60 \mathbf{j}+80 \mathbf{k}\} \mathrm{kN}+\{50 \mathbf{i}-100 \mathbf{j}+100 \mathbf{k}\} \mathrm{kN}$
(b)
$=\{50 \mathbf{i}-40 \mathbf{j}+180 \mathbf{k}\} \mathrm{kN}$

- Magnitude of F_{R} :

$$
F_{R}=\sqrt{(50)^{2}+(-40)^{2}+(180)^{2}}
$$

$$
=191.0=191 \mathrm{kN}
$$

Solution Example 2.9

- Coordinate direction (angle) of F_{R} :
$F_{R}=\{50 \mathbf{i}-40 \mathbf{j}+180 k\} \mathrm{kN}$
- magnitude $\mathrm{F}_{\mathrm{R}}=191 \mathrm{kN}$
$-\mathbf{u}_{\mathrm{FR}}=\mathrm{F}_{\mathrm{R}} / F_{R}$
So that

$$
\begin{align*}
& \alpha=\cos ^{-1}\left(F_{\mathrm{Rx}} / F_{\mathrm{R}}\right)=\cos ^{-1}(50 / 191)=74.8^{\circ} \tag{b}\\
& \beta=\cos ^{-1}\left(\mathrm{~F}_{\mathrm{Ry}} / \mathrm{F}_{\mathrm{R}}\right)=\cos ^{-1}(-40 / 191)=102^{\circ} \\
& \gamma=\cos ^{-1}\left(\mathrm{~F}_{\mathrm{Rz}} / F_{\mathrm{R}}\right)=\cos ^{-1}(180 / 191)=19.5^{\circ}
\end{align*}
$$

Note $\beta>90^{\circ}$ since \boldsymbol{j} component of $\boldsymbol{u}_{F R}$ is negative

Example 2.10

Determine the magnitude and coordinate direction of the resultant force

Solution Example 2.10

First resolve the force F_{1}

$$
\begin{aligned}
& \mathrm{F}_{1 \mathrm{z}}=-250 \sin 35^{\circ}=-143.4 \mathrm{~N} \\
& \mathrm{~F}^{\prime}=250 \cos 35^{\circ}=204.8 \mathrm{~N}
\end{aligned}
$$

F^{\prime} can be further resolved as

$$
\begin{aligned}
& F_{1 x}=204.8 \sin 25^{\circ}=86.6 \mathrm{~N} \\
& F_{1 y}=204.8 \cos 25^{\circ}=185.6 \mathrm{~N}
\end{aligned}
$$

Now F_{1} in 3-D term :

$$
F_{1}=\{86.6 i+185.6 j-143.4 k\} N
$$

Solution Example 2.10

Then resolve the force F_{2}

$$
\begin{aligned}
F_{2} & =400\left\{\cos 120^{\circ} i+\cos 45^{\circ} j+\cos 60^{\circ} k\right\} \mathrm{N} \\
& =\{-200 i+282.8 j+200 k\} \mathrm{N}
\end{aligned}
$$

$$
F_{2}=\{-200 i+282.8 j+200 k\} \mathrm{N}
$$

Solution Example 2.10

- Summing all the I, j and k components, respectively:

$$
\begin{aligned}
& F_{R}=F_{1}+F_{2} \\
& F_{1}=\{86.6 i+185.6 j-143.4 k\} \mathrm{N} \\
& F_{2}=\{-200 i+282.8 j+200 k\} \mathrm{N} \\
& F_{R}=\{-113.4 i+468.4 j+56.6 k\} \mathrm{N}
\end{aligned}
$$

- Magnitude and coordinate direction (angle):

$$
\begin{aligned}
& F_{R}=\left\{(-113.4)^{2}+468.4^{2}+56.6^{2}\right\}^{1 / 2}=485.2=485 \mathrm{~N} \\
& \alpha=\cos ^{-1}\left(F_{R x} / F_{R}\right)=\cos ^{-1}(-113.4 / 485.2)=\underline{104^{\circ}} \\
& \beta=\cos ^{-1}\left(F_{R y} / F_{R}\right)=\cos ^{-1}(468.4 / 485.2)=\underline{15.1^{\circ}} \\
& \gamma=\cos ^{-1}\left(F_{R z} / F_{R}\right)=\cos ^{-1}(56.6 / 485.2)=\underline{83.3^{\circ}}
\end{aligned}
$$

Example 2.11

Determine the coordinate direction angle of F_{2}, so that the resultant force F_{R} acts along the positive Y axis and has a magnitude of 800 N

(a)

Solution Example 2.11

(b)

- Cartesian vector form:

$$
\begin{aligned}
\mathbf{F}_{\mathrm{R}} & =\mathbf{F}_{1}+\mathbf{F}_{2} \\
\mathbf{F}_{1} & =F_{1} \cos \alpha_{1} \mathbf{i}+F_{1} \cos 8_{\mathbf{j}} \mathbf{j}+F_{1} \cos \gamma_{1} \mathbf{k} \\
& =\left(300 \cos 45^{\circ} \mathrm{N}\right) \mathbf{i}+\left(300 \cos 60^{\circ} \mathrm{N}\right) \mathbf{j}+\left(300 \cos 120^{\circ} \mathrm{N}\right) \mathbf{k} \\
& =\{212.1 \mathbf{k}+150 \mathbf{j}-150 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

$$
\mathbf{F}_{2}=F_{2 x} \mathbf{i}+F_{2 y} \mathbf{j}+F_{2 z} \mathbf{k}
$$

Solution Example 2.11

- Magnitude of F_{R} is 800 N acts in +j direction:

$$
F_{R}=F_{1}+F_{2}=800
$$

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{R}}=\{212.1 \mathbf{i}+150 \mathbf{j}-150 \mathbf{k}\} \mathbf{N}+\left(F_{2 x} \mathbf{i}+F_{2 \mathrm{Y}} \mathbf{j}+F_{2 Z} \mathbf{k}\right) \mathrm{N} \\
& 800 \mathbf{j}=\left(212.1+F_{2 \mathrm{X}}\right) \mathbf{i}+\left(150+F_{2 \gamma}\right) \mathbf{j}+\left(-150+F_{2 z}\right) \mathbf{k}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { Left and right sides } \\
& \text { must be equal }
\end{aligned}
$$

$$
0=212.1+F_{2 x} \text { hence } F_{2 x}=-212.1 \mathrm{~N}
$$

$$
800=150+F_{2 Y} \text { hence } F_{2 Y}=650 \mathrm{~N}
$$

$$
0=-50+F_{2 z} \quad \text { hence } F_{2 z}=150 \mathrm{~N}
$$

Solution Example 2.11

(b)

So, coordiante
direction of F_{2}

$$
\begin{aligned}
& \alpha=\cos ^{-1}\left(F_{2 x} / F_{2}\right)=\cos ^{-1}(-212.1 / 700)=\underline{108^{\circ}} \\
& \beta=\cos ^{-1}\left(F_{2 y} / F_{2}\right)=\cos ^{-1}(650 / 700)=\underline{21.8^{\circ}} \\
& \gamma=\cos ^{-1}\left(F_{2 z} / F_{2}\right)=\cos ^{-1}(150 / 700)=\underline{77.6^{\circ}}
\end{aligned}
$$

Conclusion of The Chapter 2 part II

- Conclusions
- The Cartesian vector have been identified and determined in the mechanics
- The 2-D and 3-D vector has been represent in a Cartesian coordinate system
- The magnitude and direction of 2-D and 3-D of resultant forces have been determined in a Cartesian coordinate system

Credits to:

Dr Nurul Nadhrah Bt Tukimat nadrah@ump.edu.my

En Khalimi Johan bin Abd Hamid khalimi@ump.edu.my

Roslina binti Omar rlina@ump.edu.my

