ENGINEERING MECHANICS BAA1113

Chapter 2: Force Vectors (Static)

by
Pn Rokiah Bt Othman
Faculty of Civil Engineering \& Earth Resources
rokiah@ump.edu.my

Chapter Description

- Aims
- To review the Parallelogram Law and Trigonometry
- To explain the Force Vectors
- To explain the Vectors Operations
- To express force and position in Cartesian Vectors
- Expected Outcomes
- Able to solve the problems of force vectors in the mechanics applications by using Parallelogram law and Trigonometry
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

Chapter Outline

2.1 Scalars and Vectors - part I
2.2 Vectors Operations - part I
2.3 Vectors Addition of Forces - part I
2.4 Cartesian Vectors - part II
2.5 Force and Position Vectors - part III

2.1 Scalars and Vectors

Length of a mini car is 3.821 mm

Source:http:http://www.shodor.org
Position of the plane is 25 miles from west southwest

Identify scalars and vectors

Comparison of Scalars and Vectors

Vectors

- Represent by a letter with an arrow over it such as \vec{A} or \mathbf{A}
- Magnitude is designated as $|\vec{A}|$ or simply A
- Commonly, vector is presented as A and its magnitude (positive quantity) as A

Characteristics of Vectors

- Represented graphically as an arrow
- Length of arrow = Magnitude of Vector
- Angle between the reference axis and arrow's line of action = Direction of Vector
- Arrowhead = Sense of Vector

Example of Vectors

Magnitude of Vector $=4$ units
Direction of Vector $=20^{\circ}$ measured counterclockwise from the horizontal axis

Sense of Vector = Upward and to the right

The point O is called tail of the vector and the point
P is called the tip or head

2.2 Vector Operations

- Multiplication and Division of a Vector by a Scalar
- Product of vector \mathbf{A} and scalar $\mathrm{a}=\mathrm{a} \mathbf{A}$
- Magnitude = $|a A|$
- If a is positive, sense of $a \mathbf{A}$ is the same as sense of \mathbf{A}
- If a is negative sense of
- $\mathrm{a} \mathbf{A}$, it is opposite to the

- sense of \mathbf{A}

2.2 Vector Operations

- Multiplication and Division of a Vector by a Scalar
- Negative of a vector is found by multiplying the vector by (-1)
- Law of multiplication applies
- $\mathrm{Eg}: \mathbf{A} / \mathrm{a}=(1 / \mathrm{a}) \mathrm{A}, \mathrm{a} \neq 0$

2.2 Vector Operations

- Vector Addition
- Addition of two vectors A and B gives a resultant vector \mathbf{R} by the parallelogram law
- Result R can be found by triangle construction
- Communicative
- Eg: R = A + B = B + A

2.2 Vector Operations

- Vector Addition

(a)

Parallelogram Law
(b)

Triangle constiuction
(c)

Tiratigle construction (d)

2.2 Vector Operations

- Vector Addition

- Special case: Vectors A and B are collinear (both have the same line of action)

Addition of collinear vectors

2.2 Vector Operations

- Vector Subtraction
- Special case of addition
- Eg: $\mathbf{R}^{\prime}=\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B})$
- Rules of Vector Addition Applies

Parallelogram law

Triangle constıuction

2.2 Vector Operations

- Resolution of Vector
- Any vector can be resolved into two components by the parallelogram law
- The two components \mathbf{A} and \mathbf{B} are drawn such that they extend from the tail or \mathbf{R} to points of intersection

Extend parallel lines from the head of \mathbf{R} to form components

(b)

2.3 Vector Addition of Forces

- When two or more forces are added, successive applications of the parallelogram law is carried out to find the resultant
- Eg: Forces $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} acts at a point O
- First, find resultant of
- $F_{1}+F_{2}$
- Resultant,
- $\mathrm{F}_{\mathrm{R}}=\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)+\mathrm{F}_{3}$

Example of Vector Addition of Forces

- F_{a} and F_{b} are forces exerting on the hook.
- Resultant, \mathbf{F}_{c} can be found using the parallelogram law
- Lines parallel to a and b
- from the heads of F_{a} and F_{b} are
- drawn to form a parallelogram
- Similarly, given F_{c}, F_{a} and F_{b}
- can be found

Steps to Solve the Vectors Operations

- Parallelogram Law
- Make a sketch using the parallelogram law
- Two components forces add to form the resultant force
- Resultant force is shown by the diagonal of the parallelogram
- The components is shown by the sides of the parallelogram

Steps to Solve the Vectors Operations

- Parallelogram Law
- To resolve a force into components along two axes directed from the tail of the force
- Start at the head, constructing lines parallel to the axes
- Label all the known and unknown force magnitudes and angles
- Identify the two unknown components

Steps to Solve the Vectors Operations

- Trigonometry
- Redraw half portion of the parallelogram
- Magnitude of the resultant force can be determined by the law of cosines
- Direction if the resultant force can be determined by the law of sines

Steps to Solve the Vectors Operations

- Trigonometry
- Magnitude of the two components can be determined by the law of sines

$$
\begin{aligned}
& \text { Sine law: } \\
& \frac{A}{\sin a}=\frac{B}{\sin b}=\frac{C}{\sin c} \\
& \text { Cosine law: } \\
& C=\sqrt{A^{2}+B^{2}-2 A B \cos C}
\end{aligned}
$$

Example 2.1

The screw eye is subjected to two forces \boldsymbol{F}_{1} and F_{2}. Determine the magnitude and direction of the resultant force.

(a)

Solution Example 2.1

From Parallelogram Law

Unknown: magnitude of
F_{R} and angle θ

Solution Example 2.1

$90^{\circ}-25^{\circ}=65^{\circ}$

Trigonometry

 Law of Cosines
(c)

$$
\begin{aligned}
& F_{R}=\sqrt{(100 N)^{2}+(150 N)^{2}-2(100 N)(150 N) \cos 115^{\circ}} \\
& =\sqrt{10000+22500-30000(-0.4226)} \\
& =212.6 N \\
& =213 N
\end{aligned}
$$

Solution Example 2.1

Trigonometry
Law of Sines

$$
\begin{aligned}
& \frac{150 N}{\sin \theta}=\frac{212.6 N}{\sin 115^{\circ}} \\
& \sin \theta=\frac{150 N}{212.6 N}(0.9063) \\
& \sin \theta=39.8^{\circ}
\end{aligned}
$$

(c)

Solution Example 2.1

Trigonometry
Direction Φ of F_{R} measured from the horizontal

$$
\begin{aligned}
& \phi=39.8^{\circ}+15^{\circ} \\
& =54.8^{\circ} \angle^{\phi}
\end{aligned}
$$

(c)

Example 2.2

Resolve the $1000 \mathrm{~N}(\approx 100 \mathrm{~kg}$) force acting on the pipe into the components in the (a) x and y directions, (b) and (b) x and y directions.

(a)

Solution Example 2.2

(a) Parallelogram Law

From the vector diagram,

(a)

$$
F=F_{x}+F_{y}
$$

$$
F_{x}=1000 \cos 40^{\circ}=766 \mathrm{~N}
$$

$$
1000 \mathrm{~N}
$$

$$
F_{y}=1000 \sin 40^{\circ}=643 \mathrm{~N}
$$

(c)

(b)

7

Solution Example 2.2

(b) Parallelogram Law

$$
F=F_{x}+F_{y^{\prime}}
$$

Solution Example 2.2

(b) Law of Sines

$$
\begin{aligned}
& \frac{F_{x^{\prime}}}{\sin 50^{\circ}}=\frac{1000 N}{\sin 60^{\circ}} \\
& F_{x^{\prime}}=1000 N\left(\frac{\sin 50^{\circ}}{\sin 60^{\circ}}\right)=884.6 \mathrm{~N} \\
& \frac{F_{y}}{\sin 70^{\circ}}=\frac{1000 \mathrm{~N}}{\sin 60^{\circ}} \\
& F_{y}=1000 N\left(\frac{\sin 70^{\circ}}{\sin 60^{\circ}}\right)=1085 \mathrm{~N}
\end{aligned}
$$

(e)

Example 2.3

The force \mathbf{F} acting on the frame has a magnitude of 500 N and is to be resolved into two components acting along the members $A B$ and $A C$. Determine the angle θ, measured below the horizontal, so that components $F_{A C}$ is directed from A towards C and has a magnitude of 400 N .

Solution Example 2.3

(a)

Parallelogram Law

$500 N=F_{A B}+F_{A C}$

Solution Example 2.3

Law of Sines

$$
\begin{aligned}
& \frac{400 N}{\sin \phi}=\frac{500 N}{\sin 60^{\circ}} \\
& \sin \phi=\left(\frac{400 N}{500 N}\right) \sin 60^{\circ} \\
& \sin \phi=0.6928 \\
& \phi=43.9^{\circ}
\end{aligned}
$$

$F_{A C}=400 \mathrm{~N}$

500 N

Solution Example 2.3

$$
\begin{aligned}
& \text { Hence, } \\
& \theta=180^{\circ}-60^{\circ}-43.9^{\circ}=76.1^{\circ} \angle^{\theta} \\
& \text { By Law of Cosines or } \\
& \text { Law of Sines } \\
& \text { Hence, show that } \mathrm{F}_{\mathrm{AB}} \\
& \text { has a magnitude of } 561 \mathrm{~N}
\end{aligned}
$$

Solution Example 2.3

F can be directed at an angle θ above the horizontal to produce the component $F_{A C}$. Hence, show that $\theta=16.1^{\circ}$ and $F_{A B}=161 \mathrm{~N}$

(d)

Example 2.4

The ring is subjected to two forces \mathbf{F}_{1} and \mathbf{F}_{2}. If it is required that the resultant force have a magnitude of 1 kN and be directed vertically downward, determine
(a) magnitude of \mathbf{F}_{1} and \mathbf{F}_{2} provided $\theta=30^{\circ}$, and
(b) the magnitudes of \mathbf{F}_{1} and \mathbf{F}_{2} if

(a)

F2 is to be a minimum.

Solution Example 2.4

(a) Parallelogram Law

Unknown: Forces \mathbf{F}_{1} and \mathbf{F}_{2}

(b)

(a)

Solution Example 2.4

Law of Sines

$\frac{F_{1}}{\sin 30^{\circ}}=\frac{1000 \mathrm{~N}}{\sin 130^{\circ}}$
$F_{1}=653 \mathrm{~N}$
$\frac{F_{2}}{\sin 20^{\circ}}=\frac{1000 N}{\sin 130^{\circ}}$
$F_{2}=446 \mathrm{~N}$

Solution Example 2.4

(b) Minimum length of \mathbf{F}_{2} occur when its line of action is perpendicular to \mathbf{F}_{1}. Hence when

$$
\theta=90^{\circ}-20^{\circ}=70^{\circ}
$$

F_{2} is a minimum
(d)

Solution Example 2.4

(b) From the vector diagram

$$
\begin{aligned}
& F_{1}=1000 \sin 70^{\circ} N=940 N \\
& F_{2}=1000 \cos 70^{\circ} N=342 N
\end{aligned}
$$

Conclusion of The Chapter 2 part I

- Conclusions
- The scalars and vectors have been identified and implemented in the mechanics
- The vector operations have been identified and implemented in the mechanics

Credits to:

Dr Nurul Nadhrah Bt Tukimat nadrah@ump.edu.my

En Khalimi Johan bin Abd Hamid khalimi@ump.edu.my

Roslina binti Omar rlina@ump.edu.my

