

ENGINEERING MECHANICS BAA1113

Chapter 2: Force Vectors (Static)

by Pn Rokiah Bt Othman Faculty of Civil Engineering & Earth Resources rokiah@ump.edu.my

Chapter Description

Aims

- To review the Parallelogram Law and Trigonometry
- To explain the Force Vectors
- To explain the Vectors Operations
- To express force and position in Cartesian Vectors
- Expected Outcomes
 - Able to solve the problems of force vectors in the mechanics applications by using Parallelogram law and Trigonometry
- References
 - Russel C. Hibbeler. Engineering Mechanics: Statics & Dynamics, 14th Edition

Chapter Outline

2.1 Scalars and Vectors – part I
2.2 Vectors Operations – part I
2.3 Vectors Addition of Forces – part I
2.4 Cartesian Vectors – part II
2.5 Force and Position Vectors – part III

2.1 Scalars and Vectors

Identify scalars and vectors

Comparison of Scalars and Vectors

Scalars

A quantity that has only a magnitude

Vectors

A quantity that has both magnitude and direction

Mass, Length, Time, Temperature, Volume,Density Position, Displacement, Velocity, Acceleration, Momentum,Force

Vectors

- Represent by a letter with an arrow over it such as A or A
- Magnitude is designated as $|\vec{A}|$ or simply A
- Commonly, vector is presented as A and its magnitude (positive quantity) as A

Characteristics of Vectors

- Represented graphically as an arrow
- Length of arrow = Magnitude of Vector
- Angle between the reference axis and arrow's line of action = Direction of Vector
- Arrowhead = Sense of Vector

Example of Vectors

Magnitude of Vector = 4 units

Direction of Vector = 20° measured counterclockwise from the horizontal axis

Sense of Vector = Upward and to the right

The point O is called *tail* of the vector and the point P is called the *tip* or *head*

- Multiplication and Division of a Vector by a Scalar
- Product of vector A and scalar a = aA
- Magnitude = |aA|
- If a is positive, sense of aA is the same as sense of A
- If a is negative sense of
- aA, it is opposite to the
- sense of A

Vector A and its negative counterpart

- Multiplication and Division of a Vector by a Scalar
- Negative of a vector is found by multiplying the vector by (-1)
- Law of multiplication applies
- Eg: A/a = (1/a) A, a≠0

Scalar Multiplication and Division

Vector Addition

- Addition of two vectors A and B gives a resultant vector R by the parallelogram law
- Result R can be found by *triangle* construction
- Communicative
- Eg: R = A + B = B + A

Vector Addition

Vector Addition

 Special case: Vectors A and B are *collinear* (both have the same line of action)

Addition of collinear vectors

- Vector Subtraction
- Special case of addition
- Eg: $\mathbf{R}' = \mathbf{A} \mathbf{B} = \mathbf{A} + (-\mathbf{B})$
- Rules of Vector Addition Applies

- Resolution of Vector
- Any vector can be resolved into two components by the *parallelogram law*
- The two components A and B are drawn such that they extend from the tail or R to points of intersection

2.3 Vector Addition of Forces

- When two or more forces are added, successive applications of the *parallelogram law* is carried out to find the resultant
- Eg: Forces F₁, F₂ and F₃ acts at a point O
- First, find resultant of
- $F_1 + F_2$
- Resultant,
- $\mathbf{F}_{R} = (\mathbf{F}_{1} + \mathbf{F}_{2}) + \mathbf{F}_{3}$

Example of Vector Addition of Forces

- F_a and F_b are forces exerting on the hook.
- Resultant, F_c can be found using the parallelogram law
- Lines parallel to a and b
- from the heads of F_a and F_b are
- drawn to form a parallelogram
- Similarly, given \mathbf{F}_{c} , \mathbf{F}_{a} and \mathbf{F}_{b}
- can be found

Parallelogram Law

- Make a sketch using the parallelogram law
- Two components forces add to form the resultant force
- Resultant force is shown by the diagonal of the parallelogram
- The components is shown by the sides of the parallelogram

Parallelogram Law

- To resolve a force into components along two axes directed from the tail of the force
- Start at the head, constructing lines parallel to the axes
- Label all the known and unknown force magnitudes and angles
- Identify the two unknown components

Trigonometry

- Redraw half portion of the parallelogram
- Magnitude of the resultant force can be determined by the *law of cosines*
- Direction if the resultant force can be determined by the *law of sines*

Trigonometry

Magnitude of the two components can be determined by the *law of sines*

Sine law:

$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$
Cosine law:

$$C = \sqrt{A^2 + B^2 - 2AB \cos c}$$

Example 2.1

The screw eye is subjected to two forces \mathbf{F}_1 and \mathbf{F}_2 . Determine the magnitude and direction of the resultant force.

From Parallelogram Law

Unknown: magnitude of \mathbf{F}_{R} and angle θ

Trigonometry

Law of Sines

150N - 212.6N

 $\sin\theta$ $\sin 115^{\circ}$

 $\sin\theta = 39.8^{\circ}$

 $\sin\theta = \frac{150N}{212.6N} (0.9063)$

(c)

Communitising Technology

Trigonometry Direction Φ of \mathbf{F}_{R} measured from the horizontal $\phi = 39.8^{\circ} + 15^{\circ}$ $= 54.8^{\circ} \angle^{\phi}$

115°

15°

(c)

100 N

Example 2.2

Resolve the 1000 N (\approx 100kg) force acting on the pipe into the components in the (a) x and y directions, (b) and (b) x' and y directions.

From the vector diagram,

$$F = F_x + F_y$$
$$F_x = 1000 \cos 40^\circ = 766N$$
$$F_y = 1000 \sin 40^\circ = 643N$$

(b) Parallelogram Law

$$F = F_x + F_{y'}$$

(b) Law of Sines

$$\frac{F_{x'}}{\sin 50^{\circ}} = \frac{1000 N}{\sin 60^{\circ}}$$
$$F_{x'} = 1000 N \left(\frac{\sin 50^{\circ}}{\sin 60^{\circ}}\right) = 884.6 N$$
$$\frac{F_{y}}{\sin 70^{\circ}} = \frac{1000 N}{\sin 60^{\circ}}$$
$$F_{y} = 1000 N \left(\frac{\sin 70^{\circ}}{\sin 60^{\circ}}\right) = 1085 N$$

Communitising Technology

Example 2.3

The force **F** acting on the frame has a magnitude of 500N and is to be resolved into two components acting along the members AB and AC. Determine the angle θ , measured below the horizontal, so that components \mathbf{F}_{AC} is directed from A towards C and has a magnitude of 400N.

Parallelogram Law $500N = F_{AB} + F_{AC}$ $F_{AC} = 400 \text{ N}$ 60° 30° FAB 500 N (b)

Law of Sines

400 <i>N</i>	_ 500 <i>N</i>	
$\sin\phi$	$\frac{1}{\sin 60^{\circ}}$	
$\sin \phi =$	$\left(\frac{400N}{500N}\right)$	sin 60°
$\sin \phi =$	0.6928	
$\phi = 43.$	9°	

Hence,

$$\theta = 180^{\circ} - 60^{\circ} - 43.9^{\circ} = 76.1^{\circ} \angle^{\theta}$$

By Law of Cosines or Law of Sines Hence, show that \mathbf{F}_{AB} has a magnitude of 561N

 $F_{AC} = 400 \text{ N}$ 60° FAB 500 N (c)

F can be directed at an angle θ above the horizontal to produce the component \mathbf{F}_{AC} . Hence, show that $\theta = 16.1^{\circ}$ and $\mathbf{F}_{AB} = 161N$

(d)

Example 2.4

The ring is subjected to two forces \mathbf{F}_1 and \mathbf{F}_2 . If it is required that the resultant force have a magnitude of 1kN and be directed vertically downward, determine (a) magnitude of \mathbf{F}_1 and \mathbf{F}_2 provided $\theta = 30^{\circ}$, and (b) the magnitudes of \mathbf{F}_1 and \mathbf{F}_2 if F2 is to be a minimum.

(a) Parallelogram Law Unknown: Forces **F**₁ and **F**₂

Law of Sines

 $\frac{F_1}{\sin 30^{\circ}} = \frac{1000N}{\sin 130^{\circ}}$ $F_1 = 653N$ $\frac{F_2}{\sin 20^{\circ}} = \frac{1000N}{\sin 130^{\circ}}$ $F_2 = 446N$

(b) Minimum length of F₂ occur when its line of action is perpendicular to F₁. Hence when

$$\theta = 90^{\circ} - 20^{\circ} = 70^{\circ}$$

Communitising Technology

 \mathbf{F}_2 is a minimum

(b) From the vector diagram

$$F_1 = 1000 \sin 70^\circ N = 940N$$

 $F_2 = 1000 \cos 70^\circ N = 342N$

Conclusion of The Chapter 2 part I

- Conclusions
 - The scalars and vectors have been identified and implemented in the mechanics
 - The vector operations have been identified and implemented in the mechanics

Credits to:

Dr Nurul Nadhrah Bt Tukimat nadrah@ump.edu.my

En Khalimi Johan bin Abd Hamid khalimi@ump.edu.my

> Roslina binti Omar rlina@ump.edu.my

