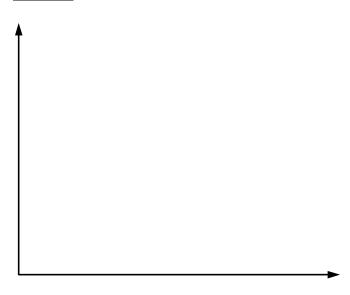
QUIZ 1A - APPLIED THERMODYNAMICS


NAME:	
ID. NO.:	
Q1. Sketch <i>P-V</i> diagram for Otto and Diesel cycle. Discuss the differences between these two cycles.	(7 mark)
ANSWER	(/ mark)
†	
•	

Q2. An ideal Otto cycle with air as the working fluid has a compression ratio of 10. The minimum and maximum temperatures in the cycle are 300 and 1340 K respectively. Accounting for the variation of specific heats with temperature, sketch P-V diagram of the cycle and determine:

a) The amount of heat transferred to the air during the heat addition process

b)	The net work output (kJ/kg)	(18 marks)
----	-----------------------------	------------

ANSWER

QUIZ 1B - APPLIED THERMODYNAMICS

NAME:	
ID. NO.:	
Q1. An ideal Otto cycle with a specific compression ratio is executed using air, argon and ethane as fluid. For which case will the thermal efficiency is the highest. Sketch the thermal efficiency a compression ratio for the three working fluids (use scale range 0 to 12 for the compression ratio).	-
A NOWED	(7 mark
<u>ANSWER</u>	
↑	

Q2. An idea Otto cycle has a compression ratio of 11, takes in air at 100 kPa and $25 \,^{\circ}\text{C}$. The rotational speed of the cycle is $2000 \, \text{rpm}$. Using constant specific heats at room temperature, sketch P-V diagram of the cycle and determine the thermal efficiency and the rate of heat input if the cycle produces $180 \, \text{kW}$ of power

(18 marks)

