

CHAPTER 7 DESIGNING MODELS FOR ADDRESSING AND NAMING

Expected Outcomes

Able to design the addressing and naming for the determined network, servers and workstation.

Able to determine the Public & Private IP Address that should be used.

Able to design the network with subnets

Guidelines for Addressing and Naming

- Use a structured model for addressing and naming
- Assign addresses and names hierarchically
- Decide in advance if you will use
 - Central or distributed authority for addressing and naming
 - Public or private addressing
 - Static or dynamic addressing and naming

Advantages of Structured Models for Addressing & Naming

• It makes it easier to

- Read network maps
- Operate network management software
- Recognize devices in protocol analyzer traces
- Meet goals for usability
- Design filters on firewalls and routers
- Implement route summarization

Public IP Addresses

- Managed by the Internet Assigned Numbers Authority (<u>IANA</u>)
- Users are assigned IP addresses by Internet service providers (ISPs).
- ISPs obtain allocations of IP addresses from their appropriate Regional Internet Registry (RIR)

Regional Internet Registries (RIR)

- <u>APNIC (Asia Pacific Network Information Centre)</u> Asia/Pacific Region
- <u>ARIN (American Registry for Internet Numbers)</u> North America and Sub-Sahara Africa
- <u>LACNIC (Regional Latin-American and Caribbean IP</u> <u>Address Registry)</u> – Latin America and some Caribbean Islands
- <u>RIPE NCC (Réseaux IP Européens)</u> Europe, the Middle East, Central Asia, and African countries located north of the equator

Private Addressing

- •10.0.0.0 10.255.255.255
- •172.16.0.0 172.31.255.255
- •192.168.0.0 192.168.255.255

Criteria for Using Static Vs. Dynamic Addressing

- The number of end systems
- The likelihood of needing to renumber
- The need for high availability
- Security requirements
- The importance of tracking addresses
- Whether end systems need additional information
 - (DHCP can provide more than just an address)

The Two Parts of an IP Address

Prefix Length

- An IP address is accompanied by an indication of the prefix length
 - Subnet mask
 - /Length
- Examples
 - 192.168.10.1 255.255.255.0
 - 192.168.10.1/24

Subnet Mask

- 32 bits long
- Specifies which part of an IP address is the network/subnet field and which part is the host field
 - The network/subnet portion of the mask is all 1s in binary.
 - The host portion of the mask is all 0s in binary.
 - Convert the binary expression back to dotted-decimal notation for entering into configurations.
- Alternative
 - Use slash notation (for example /24)
 - Specifies the number of 1s

Subnet Mask Example

- 11111111 1111111 11111111 0000000
- What is this in slash notation?
- What is this in dotted-decimal notation?

Another Subnet Mask Example

- 11111111 1111111 11110000 00000000
- What is this in slash notation?
- What is this in dotted-decimal notation?

One More Subnet Mask Example

- 11111111 1111111 11111000 00000000
- What is this in slash notation?
- What is this in dotted-decimal notation?

Designing Networks with Subnets

- Determining subnet size
- Computing subnet mask
- Computing IP addresses

Addresses to Avoid When Subnetting

- A node address of all ones (broadcast)
- A node address of all zeros (network)
- A subnet address of all ones (all subnets)
- A subnet address of all zeros (confusing)
 - Cisco IOS configuration permits a subnet address of all zeros with the ip subnet-zero command

TP Address Classes

- Classes are now considered obsolete
- But you have to learn them because
 - Everyone in the industry still talks about them!
 - You may run into a device whose configuration is affected by the classful system

Classful IP Addressing

Class	First Few Bits	First Byte	Prefix Length	Intent
A	0	1-126*	8	Very large networks
B	10	128-191	16	Large networks
C	110	192-223	24	Small networks
D	1110	224-239	NA	IP multicast
E	1111	240-255	NA	Experimental

*Addresses starting with 127 are reserved for IP traffic local to a host.

Division of the Classful Address Space

Class	Prefix Length	Number of Addresses per Network
A	8	$2^{24}-2 = 16,777,214$
B	16	$2^{16}-2 = 65,534$
C	24	$2^{8}-2 = 254$

Classful IP is Wasteful

- Class A uses 50% of address space
- Class B uses 25% of address space
- Class C uses 12.5% of address space
- Class D and E use 12.5% of address space

Classless Addressing

- Prefix/host boundary can be anywhere
- Less wasteful
- Supports route summarization
 - Also known as
 - Aggregation
 - Supernetting
 - Classless routing
 - Classless inter-domain routing (CIDR)
 - Prefix routing

- Move prefix boundary to the left
- Branch office advertises 172.16.0.0/14

172.16.0.0/14 Summarization

Second Octet in Decimal Second Octet in Binary

16	000100 00
17	000100 01
18	000100 10
19	000100 11

Discontiguous Subnets

A Mobile Host

IPv6 Aggregatable Global Unicast Address PAHANG Format

3	13		8	24	16			
64 FP	bits TLA ID	RES	NLA ID	SLA ID	Interface ID			
Public topology Site Topology								

- FP Format Prefix (001)
- TLA ID Top-Level Aggregation Identifier
- RES Reserved for future use
- NLA ID Next-Level Aggregation Identifier
- SLA ID Site-Level Aggregation Identifier

Interface ID

Interface Identifier

Upgrading to IPv6

- Dual stack
- Tunneling
- Translation

Guidelines for Assigning Names

- Names should be
 - Short
 - Meaningful
 - Unambiguous
 - Distinct
 - Case insensitive
- Avoid names with unusual characters
 - Hyphens, underscores, asterisks, and so on

Domain Name System (DNS)

- Maps names to IP addresses
- Supports hierarchical naming
 - example: frodo.rivendell.middle-earth.com
- A DNS server has a database of resource records (RRs) that maps names to addresses in the server's "zone of authority"
- Client queries server
 - Uses UDP port 53 for name queries and replies
 - Uses TCP port 53 for zone transfers

DNS Details

- •Client/server model
- Client is configured with the IP address of a DNS server
 - Manually or DHCP can provide the address
- •DNS *resolver software* on the client machine sends a query to the DNS server. Client may ask for *recursive lookup*.

DNS Recursion

- A DNS server may offer *recursion*, which allows the server to ask other servers
 - Each server is configured with the IP address of one or more root DNS servers.
- When a DNS server receives a response from another server, it replies to the resolver client software. The server also caches the information for future requests.
 - The network administrator of the authoritative DNS server for a name defines the length of time that a nonauthoritative server may cache information.

Universiti Malaysia PAHANG Ergineering • Technology • Creativity

Summary

- Use a systematic, structured, top-down approach to addressing and naming
- Assign addresses in a hierarchical fashion
- Distribute authority for addressing and naming where appropriate
- IPv6 looms in our future

Review Questions

- Why is it important to use a structured model for addressing and naming?
- When is it appropriate to use IP private addressing versus public addressing?
- When is it appropriate to use static versus dynamic addressing?
- What are some approaches to upgrading to IPv6?

