

CHAPTER 5 CHARACTERIZING THE NETWORK TRAFFIC

Expected Outcomes

Able to analyse the network traffic Able to use specific tools to monitor the network performance

What is Network Traffic?


- "data in a network"
- In computer networks, the data is encapsulated in packets.

../What is Network Traffic?

SNMP

The Simple Network Management Protocol (SNMP) is the basic method of gathering bandwidth and network usage data. It can be used to monitor bandwidth usage of routers and switches port-by-port as well as device readings like memory, CPU load etc.

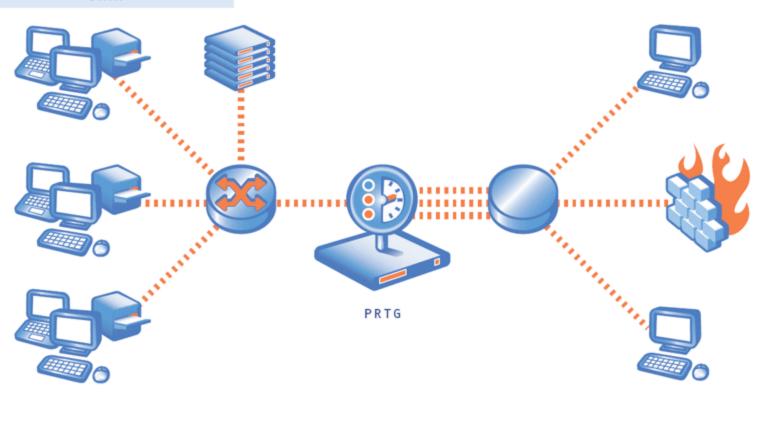
OPEN COUNSEWARE

Chapter Outline

- Traffic flow
- Location of traffic sources and data stores
- Traffic load
- Traffic behavior
- Quality of Service (QoS) requirements

What is Network Traffic?

- "data in a network"
- In computer networks, the data is encapsulated in packets.



OPEN WARE

../What is Network Traffic?

SNMP

The Simple Network Management Protocol (SNMP) is the basic method of gathering bandwidth and network usage data. It can be used to monitor bandwidth usage of routers and switches port-by-port as well as device readings like memory, CPU load etc.

Characterizing Traffic Flow

How to characterize the direction and symmetry of traffic flow on an existing network and analyzing flow for new applications.

- 1. Identifying Major Traffic Sources and Stores
 - first identify user communities (table 4-1) and data stores (table 4-2) for existing and new applications.
- 2. Documenting Traffic Flow on the Existing Network
 - Identifying and characterizing individual traffic flows (table 4-3) between sources and stores -> important in measuring traffic flow behavior
- 3. Characterizing Types of Traffic Flow for New Network Application
 - Characterized by its direction and symmetry.
 - To classify applications as supporting one of a few well known flow types eg. terminal/host traffic flow, client/server, peer-to-peer, etc.
- 4. Documenting Traffic Flow for New and Existing Network Application
 - Use table 4-4 to document traffic flow for new (and existing) network applications

User Communities

User Community Name	Size of Community (Number of Users)	Location(s) of Community	s) Used by

Universiti Malaysia PAHANG Egenerity - Technology - Creative

Data Stores

	Data Store	Location	Application s)	(Used by User Community(or
_				Communitie s)



Traffic Flow

Destination MB/sec	Destination 1 MB/sec	Destination 2 MB/sec	Destination3 MB/sec	
Source 1				
Source 2				
Source 3				
Source <i>n</i>				

Network Applications Traffic Characteristics

Name of Application	Type of Traffic Flow	Protocol(s) Used by Application	User Communities That Use the Application	Data Stores (Servers, Hosts, and so on)	Approximate Bandwidth Requirements	QoS Requirements

Types of Traffic Flow

- Terminal/host
- Client/server
- Thin client
- Peer-to-peer
- Server/server
- Distributed computing

Traffic Flow for Voice over IP

- The flow associated with transmitting the audio voice is separate from the flows associated with call setup and teardown.
 - The flow for transmitting the digital voice essentially peer-to-peer.
 - Call setup and teardown is a client/server flow
 - A phone needs to talk to a server or phone switch that understands phone numbers, IP addresses, capabilities negotiation, and so on.

Characterizing Traffic Load

Purpose:

- To avoid a design with any critical bottleneck.
 To avoid bottleneck:
- Research for application usage patterns, idle times between packets and sessions, frame sizes, and other traffic behavioral patterns for application and system approach.
- Give large amounts of bandwidth at a problem.
 - LAN bandwidth is extremely cheap, Gigabit Ethernet also most organizations can afford.

Characterizing Traffic Load cont...

- 1. Calculating Theoretical Traffic Load
- To calculate whether capacity is sufficient, you should know:
 - The number of stations
 - The average time that a station is idle between sending frames
 - The time required to transmit a message once medium access is gained
- 2. Documenting Application-Usage Patterns
- Few data obtained during characterizing traffic flow -> user communities, number of users in communities, and the applications that users employ.
- Additional information required:
 - The frequency of application sessions (number of session per day, week, month, or whatever time period is appropriate.
 - The length of an average application session
 - The number of simultaneous users of an application.

Characterizing Traffic Load cont...

- 3. Refining Estimates of Traffic Load Caused by Applications
- Need to research the size of data objects sent by applications, the overhead caused by protocol layers, and any additional load caused by application initialization.
- Table 4-5 shows some estimates for object sizes
- 4. Estimating Traffic Load Caused by Routing Protocols
- At this point of designing process, you might not have selected routing protocols for new network but you should have identified routing protocols running on the existing network.
- Use table 4-7 as guidance that shows the amount of legacy distance-vector routing protocols.

Size of Objects on Networks

• Table 4-5 : Approximate Size of Objects that applications Transfer across networks

Type of Objects	Size (Kbytes)
Terminal screen	4
Simple e-mail	10
Simple web page	50
Spreadsheet	100
Word processing document	200
High-quality image	50,000
Database backup	1,000,000

Bandwidth used by Legacy Routing

Table 4-7: Bandwidth used by Legacy Routing Protocols

Routing Protocol	Default Update Timer (sec)	Route Entry Size (Bytes)	Routes per packet	Network & Update Overhead (Bytes)	Size of full packet
IP RIP	30	20	25	32	532
IP IGRP	90	14	104	32	1488
AppleTal k RTMP	10	6	97	17	599
IPX RIP	60	8	50	32	432

Characterizing Traffic Behavior

- 1. Broadcast/Multicast Behavior
- Broadcasts
 - Broadcast frame = frame that goes to all network stations on a LAN
 - All 1s in binary data-link layer destination address
 FF: FF: FF: FF: FF: FF
 - Doesn't necessarily use huge amounts of bandwidth
 - But does disturb every CPU in the broadcast domain

Multicasts

- Multicast frame = frame that goes to a subset of stations.
- First bit sent is a one
 - 01:00:0C:CC:CC (Cisco Discovery Protocol)
- Should just disturb NICs that have registered to receive it
- Requires multicast routing protocol on internetworks

Universiti Malaysia PAHANG Ergineering • Technology • Creativery

Characterizing Traffic Behavior cont...

- 2. Network Efficiency
- Efficiency refers to whether applications and protocols use bandwidth effectively.
 Efficiency is affected by:
 - Frame size
 - Protocol interaction (refer to page 114 of text book for examples)
 - Windowing and flow control
 - Error-recovery mechanisms

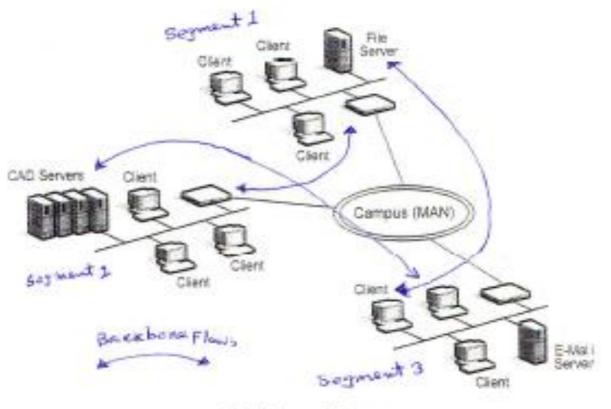
Characterizing QoS Requirements

- Besides information about load, you also need to know if the requirements is flexible or inflexible.
- Two techniques in analyzing QoS requirements: (you might need to read your text pg 119 – 126)
- 1. ATM service specifications
 - Constant bit rate (CBR)
 - Realtime variable bit rate (rt-VBR)
 - Non-realtime variable bit rate (nrt-VBR)
 - Unspecified bit rate (UBR)
 - Available bit rate (ABR)
 - Guaranteed frame rate (GFR)

Characterizing QoS Requirements Universiti Malaysia cont...

2. IETF integrated services working group Specifications

- Controlled load service
 - Provides client data flow with a QoS closely approximating the QoS that same flow would receive on an unloaded network
- Guaranteed service
 - Provides firm (mathematically provable) bounds on end-to-end packet-queuing delays



Practical Analysis

Campus (MAN) network with three segments and backbone flows

Backbone Flows

Traffic Table for Campus (MAN) Network

Applic	%	No. of	Averag	Estimated	Backbone	Backbone	Backbone	TOTAL
ation	Distribut	simultaneous	e	total	Capacity	Capacity	Capacity	Backbone
	ion per	sessions	Transa	Capacity	required	required	required	Capacity
	segment		ction /	required	for	for	for	Required
	(1/2/3)		Packet	(bps)	SEGMEN-1	SEGMEN-2	SEGMEN-3	(bps)
			size		(bps)	(bps)	(bps)	
E-mail	33/33/33	540000/hour	3 Kilo					
			Byte					
			(KB)					
CAD	0/50/50	650/hour	4					
Server			Mega					
			Byte					
			(MB)					
File	25/25/50	100.8/hour	2.5					
Server			MB					
BCN2	093 – Network	Analysis &						UMP OPEN COURSEWARE

Applic	%	No. of	Averag	Estimated	Backbone	Backbone	Backbone	TOTAL
ation	Distribut	simultaneous	e	total	Capacity	Capacity	Capacity	Backbone
	ion per	sessions	Transa	Capacity	required	required	required	Capacity
	segment		ction /	required	for	for	for	Required
	(1/2/3)		Packet	(bps)	SEGMEN-1	SEGMEN-2	SEGMEN-3	(bps)
			size		(bps)	(bps)	(bps)	
E-mail	33/33/33	540000/hour	3 Kilo	3.6 Mbps	1.2 Mbps	1.2 Mbps	1.2 Mbps	
			Byte					
			(KB)					
CAD	0/50/50	650/hour	4					
Server			Mega					
			Byte					
			(MB)					
File	25/25/50	100.8/hour	2.5					
Server			MB					
BCN2	093 – Network	Analysis &						UMP OPEN COURSEWARE

Applic	%	No. of	Averag	Estimated	Backbone	Backbone	Backbone	TOTAL
ation	Distribut	simultaneous	e	total	Capacity	Capacity	Capacity	Backbone
	ion per	sessions	Transa	Capacity	required	required	required	Capacity
	segment		ction /	required	for	for	for	Required
	(1/2/3)		Packet	(bps)	SEGMEN-1	SEGMEN-2	SEGMEN-3	(bps)
			size		(bps)	(bps)	(bps)	
E-mail	33/33/33	540000/hour	3 Kilo	3.6 Mbps	1.2 Mbps	1.2 Mbps	1.2 Mbps	3.6 Mbps
			Byte					+
			(KB)					5.8 Mbps
CAD	0/50/50	650/hour	4	5.8 Mbps	0	2.9 Mbps	2.9 Mbps	+
Server			Mega					0.56
			Byte					Mbps
			(MB)					= 9.96
File	25/25/50	100.8/hour	2.5	560 kbps	140 kbps	140 kbps	280 kbps	Mbps
Server			MB					
BCN2	093 – Network	Analysis &						UMP OPEN COURSEWARE