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Numerical Discretization 

• Aims 

– The aim of this chapter is to identify and understand the common 

methods used in process of discretization  

 

• Expected Outcomes: At the end of this lecture, students 

should be able to understand  

– types of numerical discretization techniques 

– numerical solutions to algebraic equations  

– How to apply common discretization techniques to typical flow 

equations 

• References 

 

 



Overall Computational Solution Procedure 

Discussed in 

Chapter 2 

Ansys Fluent 

uses this method 

Discretisation approaches 

Finite difference Finite volume 

Generate systems of algebraic equations 

Identify the governing equations 

and boundary conditions 

Solve the equation using 

numerical method 

Obtain approximate solutions 

of the variables 



Numerical Discretization Techniques  

What is Discretization? 
 

 Discretization can be defined as conversion of partial 

differential equations (that represent the thermal-fluid 

process) to a numerical analogue of systems of 

algebraic equation. 

  In this case, each components (terms) of the 

differential equation should be converted to an 

algebraic equation  that can easily be calculated by 

computer through programing.  



Numerical Discretization Techniques  

Discretization of the physical domain 

 When the continuous domain is transformed into a 

domain in which the flow governing equations can be 

solved it is called discretizing the domain 

 

Continuous domain Discretized domain 

Source:- Fluent, Inc. 

http://www.engr.uconn.edu/~barbertj/CFD%20Training/Fluent/4%20Solver%20Settings.pdf 



Numerical Discretization Techniques  

Discretization Techniques 

 There are many discretization methods. However, only two of the 
most common techniques are discussed in this chapter; 

• the finite difference method (FDM), and  

• the finite volume method (FVM).  



3.1. The Finite-Difference Method 

 The finite difference method is the oldest type of 
discretization technique developed by Euler in 1768,  

 Before converting the differential equation to algebraic 
equations, the geometric domain should first be discretized 
to define a numerical grid 

 One unknown variable will be assigned for each node and 
need one algebraic equation. 

 The approach is to represent each term of the PDE at the 
particular node by a finite-difference approximation. 

 The numbers of equations and unknown variables must be 
equal 



3.1.The Finite-Difference Method 

 The figures shown below illustrate typical examples of 1D 
and 2Dl grids commonly used in the FDM [1]. 

 The grids are uniformly distributed in Cartesian 
coordinates. 

Two 
dimensional 

One 
dimensional 



3.1.The Finite-Difference Method 

 Referring the above figures, if there exist a flow field    at 

the vortex (i,j) then the Taylor series expansion about point 

(i,j) along the x-direction produces the following equations 

for the variable at points (i+1, j) and (i-1,j) [1]. 
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3.1. The Finite-Difference Method 

 The finite difference expression for the first order derivative 

of    can be expressed by subtracting Eqn. (2) from (1). 

 

 

 
 

 Neglecting the higher order derivatives in the Eq. (3), we 

get 

 

 

 Equation (4) is called Central Difference  
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3.1.The Finite-Difference Method 

 The term “Central Difference” refers to show that the value 

of the variable depends on the values on both sides of the 

point (i,j). 

 It is also possible to generate other expressions for the first 

derivative as: 

 

 

 
 

 

 

Forward Difference  

Backward Difference  
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3.1. The Finite-Difference Method 

 Similarly, the y derivatives can be obtained in same 

manner.  

 

 

 
 

 

 

Forward Difference  

Backward Difference  

Central Difference   
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3.1. The Finite-Difference Method 

 Moreover, the second derivative can be approximated 

using the Taylor series expansion. Thus, by adding Eqns. 

(1) and (2), we get 
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3.1. The Finite-Difference Method 

 Sometimes, the derivative may be with respect to time. In 

this regards, the Taylor series expansions can be done 

similar to that of the derivatives for space.  For instance, 

the expression for the forward difference approximation in 

time: 
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3.1. The Finite-Difference Method 

For a source-free heat conduction for the insulated rod shown 

below, ends A and B are kept at constant temperatures. The 

one-dimensional problem is governed by               , 

i) obtain finite difference expression for the differential 

equation, 

ii) the steady state temperature distribution in the rod.  

Take k =1000 W/m.K,  

        Area = 10 × 10−3 m2. 

 

 

 

 
 

 

 

Exercise 3.1. 
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
dx

Td
k



3.1. The Finite-Difference Method 

A circular rod of length 1 m and uniform cross sectional 

area is free from one end and connected to thin 

rectangular fin at the other end. The rod is cooled by 

means of convective heat transfer. Moreover, the free 

end has temperature of 30 oC and the one attached to 

the fin is kept at 200 oC. One-dimensional heat transfer 

in this situation is governed by 

Where hP/(kA) = 25 m2,  

Calculate the temperature distribution along the fin. 

 

 

 

 

 

 
 

 

 

Exercise 3.2. 
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