

Automatic Control

Modelling of Dynamic Systems (Transfer Function)

by Mohd Azri Hizami Rasid Faculty of Mechanical Engineering mahizami@ump.edu.my

> Modelling of Dynamic Systems Azri Hizami

Chapter Description

- Aims
 - To make student understand the interest of using Transfer
 Function (TF) and familiarize them with TF in studying a system.
- Expected Outcomes
 - Student will be able to explain the difference of time domain and frequency domain
 - Student will be able to manipulate the Laplace transform to construct a TF
- References

Modelling of Dynamic Systems Azri Hizami

Content

- Understanding time and frequency domain
- Introduction to Transfer Function (TF)
- TF tool : Laplace transform
- Converting differential equation to TF
- Examples & exercises

(s)

Time domain vs. Frequency domain

Time domain	Frequency domain
Observation of variable in function of time	Observation of variable in function of frequency
Tracing: Amplitude of variable in function of time	Tracing: Amplitude of variable in function of harmonic ranks
Relatively intuitive for any system	Relatively presentation for oscillatory

• How do we transforms time domain function to frequency domain function?

LAPLACE TRANSFORM

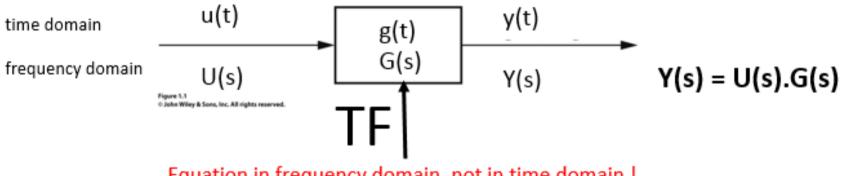
$$f(t) \rightarrow F(s)$$
$$L[f(t)] = F(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$$

Modelling of Dynamic Systems

Time domain vs. Frequency domain

Table that is used to transform time domain equation to frequency domain equation and vice versa

Table of Laplace Transforms											
	$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\{f(t)\}$						
1.	1	$\frac{1}{s}$	2.	e ^{at}	$\frac{1}{s-a}$	19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$e^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$	21.	$\mathbf{e}^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$\mathbf{e}^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$	23.	$t^n \mathbf{e}^{at}, n=1,2,3,\dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
7.	$\sin(at)$	$\frac{a}{s^2+a^2}$	8.	$\cos(at)$	$\frac{s}{s^2+a^2}$	25.	$u_{c}(t) = u(t-c)$ Heaviside Function	$\frac{e^{-cs}}{s}$	26.	$\delta(t-c)$ Dirac Delta Function	e ^{-cs}
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2-a^2}{\left(s^2+a^2\right)^2}$		$ \frac{u_{c}(t)f(t-c)}{e^{ct}f(t)} $	$\mathbf{e}^{-cs}F(s)$ F(s-c)		$u_{c}(t)g(t)$ $t^{n}f(t), n=1,2,3,$	$\mathbf{e}^{-cs}\mathfrak{L}\big\{g(t+c)\big\}$ $(-1)^{n}F^{(n)}(s)$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$		$\frac{1}{t}f(t)$	$\int_{s}^{\infty}F(u)du$		$\int_0^t f(v) dv$	$\frac{F(s)}{s}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$		$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T) = f(t)	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$		$f'(t) \ f^{(n)}(t)$	$sF(s) - f(0) \mid 36. f''(t) \qquad s^{2}F(s) - sf(0) - f'(0) s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) \cdots - sf^{(n-2)}(0) - f^{(n-1)}(0)$			
17.	$\sinh(at)$	$\frac{a}{s^2-a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2-a^2}$						
19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$\mathbf{e}^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$						


Modelling of Dynamic Systems

Transfer function (TF)

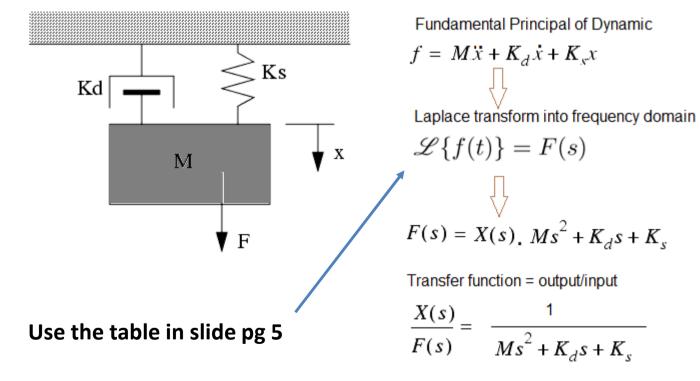
What is TF? ۲

Frequency domain mathematical model that separates input from output

Equation in frequency domain, not in time domain !

Modelling of Dynamic Systems Azri Hizami

Transfer function (TF)


- TF can be as simple as a single dynamic like spring-mass system
- It is an easier method to solve differential equation, especially incase of complex differential equation
- A system can be more complex : example of 3 cascading transfer function
- Simplification is made possible by algebraic operation on transfer functions

$$U(s) \longrightarrow G(s) \longrightarrow H(s) \longrightarrow J(s) \longrightarrow Y(s)$$
$$Y(s) = U(s).G(s).H(s).J(s)$$
Modelling of Dynamic Systems
Azri Hizami

0

Example of creating transfer function

Consider we want to control/observe the position of the mass M in axis x, x(t) in relation to the force F(t)

Modelling of Dynamic Systems Azri Hizami

Mathematical tool: Partial fraction

There will be certain transfer function in a form that is impossible to find its equivalent in the Laplace table. For example,

$$F(s) = \frac{2}{(s+1)(s+2)}$$

In this case, the closest form that can be found in Laplace table is in the form of $\frac{K}{s+p}$. Which is the Laplace transform of Ke^{-pt} .

Therefore, F(s) need to be transformed into partial fraction form, Which means finding K_1 and K_2 for

$$F(s) = \frac{K_1}{s+1} + \frac{K_2}{s+2}$$

$$L^{-1}[F(s)] = f(t) = K_1 e^{-t} + K_2 e^{-2t}$$

Modelling of Dynamic Systems Azri Hizami

Mathematical tool: Partial fraction

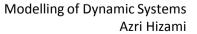
Example

$$Y(s) = \frac{(s+2)}{s(s+5)} = \frac{A}{s} + \frac{B}{s+5}$$

$$A = \frac{(s+2)}{(s+5)}\Big|_{s\to 0} = \frac{2}{5} \qquad B = \frac{(s+2)}{(s)}\Big|_{s\to -5} = \frac{3}{5}$$

$$Y(s) = \frac{\frac{2}{5}}{s} + \frac{\frac{3}{5}}{s+5}$$

$$y(t) = \frac{2}{5}e^{0t} + \frac{3}{5}e^{-5t} = \frac{2}{5} + \frac{3}{5}e^{-5t}$$


Modelling of Dynamic Systems Azri Hizami

Thank you

Should there be any question, please contact the author at <u>mahizami@ump.edu.my</u>

