

HYDRAULICS

• SUBJECT CODE : BAA 2723

CREDIT HOURS : 3CONTACT HOURS : 3

• PRE-REQUISITE : BAA 2713

Course Information by N Adilah A A Ghan

Synopsis

This course introduces:

- The concept and use of equations for open drainage and flow analyses (uniform & non-uniform flow) in open channel.
- It also covers the various phenomena such as hydraulic jump and backwater, specific energy concept application, analyses of hydraulics machinery principles and dimensional analysis & hydraulic similarity concepts.
- The application software package (HEC-RAS) will be introduced in this course.

Communitising Technology

Course Information by N Adilah A A Ghani

Course Outcome

By the end of this course, students should be able to:

- CO1: Describe the hydraulic principles and apply the fundamental concept in analyzing flow in open channels.
- CO2: Differentiate and analyze the Rapidly Varied Flow (RVF) & Gradually Varied Flow (GVF) phenomena, then design the open channel for steady & unsteady flow cases using HEC-RAS Hydraulics Software.
- CO3: Establish the dimensional analysis formulation and apply hydraulic similarity concepts in scaling analysis.
- CO4: Discuss hydraulics machinery principles and apply the fundamental concepts in analyzing the performance of hydraulic pump.

Communitising Technology

Course Information by N Adilah A A Ghar

Course Contents

- Topic 1: Flow in Open Channel
- Topic 2: Uniform Flow in Open Channel
- Topic 3: Non-Uniform Flow in Open Channel
- Topic 4: Software (Introduction and Application)
- Topic 5: Dimensional Analysis and Hydraulic Similarity
- Topic 6: Hydraulic Machinery

Course Information by N Adilah A A Ghani

Planning Schedule

Week	Topic	Course Contents	Remarks
2 (Sept17 - 23)	1. Flow in Open	1.1 Types of Channel 1.2 Types of Flow	
3 (Sept 24 –30)	Channels	1.3 Geometric Characteristics of Channels	
4 (Oct 1 – 7)	2. Uniform Flow in Open Channels	2.1 Resistance of Flow Formula 2.2 Determination of Normal depths by Various Methods	
5 (Oct 8 – 14)		Design of Open Channels 4 Effectives Cross-Sections (Circular, Rectangular, Trapezoidal)	
6 (Oct 15 - 21)	3. Non-Uniform Flow in Open Channels	3.1 Use of Specific Energy 3.2 Determination of critical Depths by Various Methods	Quiz 1 (5%)
7 (Oct 22 – 28)		3.3 Control Sections	
8 (Oct 29 – Nov 4)		3.4 Rapidly Varied Flow (RVF) - Hydraulic Jump: Types and Uses - Momentum Principle (specific force), Conjugate Depths, Energy Dissipated and Power - Length and Location of hydraulic jump	MID TERM (20%) 1 Nov 2018 6-7:30pm
9 (Nov 5-11)		MID TERM BREAK	•

Course Information by N Adilah A A Gha

3

16	REVISION WEEK		
15 (Dec 17 - 23)		6.3 Pump: Description of a Centrifugal & Reciprocating Pump 5.4 Pump Characteristics: Single, In Series and In Parallel 6.5 Characteristic Curves	Quiz 2 (5%)
14 (Dec 10 - 16)	6. Hydraulic Machinery	6.1 Introduction to Hydraulics Machines 6.2 Classification of Hydraulic Machines: Positive Displacement and Rotordynamic	
13 (Dec 3 - 9)		5.3 Hydraulics Scale Models 5.4 Types of Similarity	Assignment (10%)
12 (Nov 26 – Dec 2)	5. Dimensional Analysis and Hydraulic Similarity	5.1 Fundamental Dimensions, Systems of Units and Hydraulic Variables 5.2 Methods of Dimensional Analysis	
11 (Nov 19 – 25)	4. Software: Introduction and Application	4.1 Introduction to HECRAS 4.2 HECRAS application for steady flow analysis 4.3 HECRAS application for unsteady flow analysis	WORK-BASED PROJECT (20%)
10 (Nov 12– 18)		3.5 Gradually varied flow (GVF) - Types of GVF profiles - Classes of profiles - backwater, drawdown - Computations of depths in a GVF using direct step method	Malar

Evaluation Туре Name Marks Allocation (%) Quizzes 10% Assignments 10% Formative 20% Assessments Work-Based Project Mid Term Exam 20% Summative Final Exam 40% Total 100% Course Information by N Adilah A A Ghan

References

- 1. Chow, V.T, "Open Channel Hydraulics", McGraw Hill, Tokyo, 1959 (Web)
- 2. Mott, R. L., and Untener, J. A., "Applied Fluid Mechanics", 7th Ed., Prentice Hall, 2014
- 3. Gribbin, John E., "Hydraulics and Hydrology for Stormwater Management", Delmar Publishers', 1997
- 4. Larock, Bruce E., "Hydraulics of Pipelines System", CRC Press, 2000
- 5. Kay, M., "Practical Hydraulics", Taylor & Francis, 2008
- 6. Sturm T.W, "Open Channel Hydraulics", McGraw-Hill, 2000
- 7. Subramanya K., "Flow in open Channels", McGraw-Hill, 2008

Course Information by N Adilah A A Ghani

