

BMM3553 Mechanical Vibrations

Chapter 3: Damped Vibration of Single Degree of Freedom System (Part 1) by Che Ku Eddy Nizwan Bin Che Ku Husin Faculty of Mechanical Engineering email: eddy@ump.edu.my

Chapter Description

- Expected Outcomes Students will be able to:
 - Determine the natural frequency for damped free vibration
 - Solve the problem related to damped free vibration
- References
 - Singiresu S. Rao. Mechanical Vibrations. 5th Ed
 - Abdul Ghaffar Abdul Rahman. BMM3553 Mechanical Vibration Note. UMP.
 - Md Mustafizur Rahman. BMM3553 Mechanical Vibration Lecture Note. UMP

SDOF Damped Free Vibration

- □ Given an initial condition, determine the resulting motion.
- Initial condition:
 - \Box x: Initial position
 - $\Box \dot{x}$: Initial velocity

(i)

Viscous Damping Element (Dashpot)

Damping force is linear and proportional to velocity

c is the viscous damping coefficient Units: N-sec/m

Maintain Dynamic Equivalent

At rest, X = 0 (Static equivalent) $mg = k\delta_{st}$

Maintain Dynamic Equivalent

Apply Newton's 2nd Law

$$\sum F = m\ddot{x}$$

$$\sum F_{x\downarrow_{+}} = m\ddot{x}$$

$$mg - (kx + k\delta) - c\dot{x} = m\ddot{x}$$

Equation of Motion:

$$m\ddot{x} + c\dot{x} + kx = 0$$

Equation of Motion:

$$m\ddot{x} + c\dot{x} + kx = 0$$

- 2nd order differential equation
- Homogeneous
- Linear
- Constant coefficients
- Form of solution:

$$x(t) = A\sin(\omega t + \theta)$$
 or $x(t) = Ae^{st}$

Equation of Motion:

$$m\ddot{x} + c\dot{x} + kx = 0$$

Assume,
$$x(t) = Ae^{st}$$

then $\dot{x}(t) = Ase^{st}$
and $\ddot{x}(t) = As^2e^{st}$
 $mAs^2e^{st} + Asce^{st} + kAe^{st} = 0$
 $(ms^2 + cs + k)Ae^{st} = 0$

for a non - trivial solution

$$ms^2 + cs + k = 0$$

Equation of Motion: $m\ddot{x} + c\dot{x} + kx = 0$

$$ms^{2} + cs + k = 0$$

$$s_{1,2} = \frac{-c}{2m} \pm \frac{\sqrt{c^{2} - 4mk}}{2m}$$

$$x(t) = A_{1}e^{s_{1}t} + A_{2}e^{s_{2}t}$$

if s_1 and s_2 are not equal

Thus the general solution is:

 $x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$ $= A_1 e^{\left\{-\frac{c}{2m} + \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{k}{m}}\right\}t} + A_2 e^{\left\{-\frac{c}{2m} - \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{k}{m}}\right\}t}$

where A_1 and A_2 are arbitrary constants to be determined from the initial conditions of the system.

Damping Parameters

Critical Damping Constant and Damping Ratio:

$$\left(\frac{c_c}{2m}\right)^2 - \frac{k}{m} = 0$$

$$c_c = 2m\sqrt{\frac{\kappa}{m}} = 2\sqrt{km} = 2m\omega_n$$

The damping ratio, ζ is defined as:

$$\zeta = c / c_c$$

Damped Solution

Define:

$$\omega_n = \sqrt{\frac{k}{m}}$$
 = Natural Frequency
 $\zeta = \frac{c}{C_c}$ = Damping Ratio

$$s_{1,2} = -\zeta \omega_n \pm \sqrt{\left(\zeta^2 - 1\right)} \omega_n$$

Thus the general solution is:

$$x(t) = A_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + A_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}$$

Assuming that $\zeta \neq 0$, consider the following 3 cases:

Case1. Underdamped system

 $(\zeta < 1 \text{ or } c < c_c \text{ or } c/2m < \sqrt{k/m})$

For this condition, (ζ^2-1) is negative and the roots are:

$$s_{1} = \left(-\zeta + i\sqrt{1-\zeta^{2}}\right)\omega_{n}$$
$$s_{2} = \left(-\zeta - i\sqrt{1-\zeta^{2}}\right)\omega_{n}$$

$$\begin{aligned} x(t) &= A_1 e^{\left(-\zeta + i\sqrt{1-\zeta^2}\right)\omega_n t} + A_2 e^{\left(-\zeta - i\sqrt{1-\zeta^2}\right)\omega_n t} \\ &= e^{-\zeta\omega_n t} \left\{ A_1 e^{i\sqrt{1-\zeta^2}\omega_n t} + A_2 e^{-i\sqrt{1-\zeta^2}\omega_n t} \right\} \\ &= e^{-\zeta\omega_n t} \left\{ C\cos\sqrt{1-\zeta^2}\omega_n t + D\sin\sqrt{1-\zeta^2}\omega_n t \right\} \\ &= A e^{-\zeta\omega_n t} \sin\left(\sqrt{1-\zeta^2}\omega_n t + \phi\right) \end{aligned}$$

where (C,D) and (A, Φ) are arbitrary constants to be determined from initial conditions.

Damped Frequency,
$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

 $x(t) = e^{-\zeta \omega_n t} \{ C \cos \omega_d t + D \sin \omega_d t \}$

For the initial conditions at t = 0

$$C = x_0$$
 and $D = \frac{\dot{x}_0 + \zeta \omega_n x_0}{\sqrt{1 - \zeta^2} \omega_n}$

and hence the solution becomes

$$x(t) = e^{-\zeta\omega_n t} \left\{ x_0 \cos\sqrt{1-\zeta^2}\omega_n t + \frac{\dot{x}_0 + \zeta\omega_n x_0}{\sqrt{1-\zeta^2}\omega_n} \sin\sqrt{1-\zeta^2}\omega_n t \right\}$$

This equation describes a damped harmonic motion. Its amplitude decreases exponentially with time.

Damped Frequency,
$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

The *frequency of damped vibration* is:

Image source: https://commons.wikimedia.org/wiki/File:Underdamped_oscillation_xt.png

Case 1: ζ<1 Under damped
 (plot of x(t) vs. time)

Universiti Malaysia PAHANG

• Case 2: ζ=1 Critically damped

(Real equal roots)

$$S_{1,2} = -\omega_n$$

$$S_1 = -\omega_n$$

$$s_{2} = -\omega_{n}$$

$$x(t) = A_{1}e^{s_{1}t} + A_{2}te^{s_{2}t} \text{ or }$$

$$x(t) = (A_{1} + A_{2}t)e^{-\omega_{n}t}$$

A₁ and A₂ are constants to be found from initial conditions

Case2. Critically damped system

$$(\zeta = 1 \text{ or } c = c_c \text{ or } c/2m = \sqrt{k/m})$$

the two roots are:

$$s_1 = s_2 = -\frac{c_c}{2m} = -\omega_n$$

Due to repeated roots,

$$x(t) = (A_1 + A_2 t)e^{-\omega_n t}$$

Application of initial conditions gives:

$$A_1 = x_0$$
 and $A_2 = \dot{x}_0 + \omega_n x_0$

Thus the solution becomes:

$$x(t) = \left[x_0 + \left(\dot{x}_0 + \omega_n x_0\right)t\right]e^{-\omega_n t}$$

Case3. Overdamped system

$$(\zeta > 1 \text{ or } c > c_c \text{ or } c/2m > \sqrt{k/m})$$

The roots are real

$$s_1 = \left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n < 0$$

$$s_2 = \left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n < 0$$

$$x(t) = A_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + A_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}$$

For the initial conditions at t = 0,

$$A_{1} = \frac{x_{0}\omega_{n}(\zeta + \sqrt{\zeta^{2} - 1}) + \dot{x}_{0}}{2\omega_{n}\sqrt{\zeta^{2} - 1}}$$
$$A_{2} = \frac{-x_{0}\omega_{n}(\zeta - \sqrt{\zeta^{2} - 1}) - \dot{x}_{0}}{2\omega_{n}\sqrt{\zeta^{2} - 1}}$$

Damped Vibration Response

It can be seen that the motion is aperiodic (i.e., nonperiodic). Since, the motion will eventually diminish

Comparison of motions with different types of damping

Free Vibration with Viscous Damping

• Logarithmic Decrement:

$$\frac{x_1}{x_2} = \frac{X_0 e^{-\zeta \omega_n t_1} \cos(\omega_d t_1 - \phi_0)}{X_0 e^{-\zeta \omega_n t_2} \cos(\omega_d t_2 - \phi_0)}$$
$$= \frac{e^{-\zeta \omega_n t_1}}{e^{-\zeta \omega_n (t_1 + \tau_d)}} = e^{\zeta \omega_n \tau_d}$$

The logarithmic decrement can be obtained

$$\delta = \ln \frac{x_1}{x_2} = \zeta \omega_n \tau_d = \zeta \omega_n \frac{2\pi\zeta}{\sqrt{1-\zeta^2}} = \frac{2\pi}{\omega_d} \cdot \frac{c}{2m}$$

Logarithmic Decrement

Logarithmic decrement : the rate of decrement for free damped vibration amplitude. It is defined as the ratio of any two successive amplitudes .

For small damping,

 $\delta \approx 2\pi\zeta$ if ζ << 1 (2.86)Hence, $\zeta = \frac{\delta}{\sqrt{(2\pi)^2 + \delta^2}}$ (2.87) $\sqrt{(2\pi)},$ $\zeta \approx \frac{\delta}{2\pi}$ or (2.88)Thus, $\delta = \frac{1}{m} \ln \left(\frac{x_1}{x_{m+1}} \right)$ (2.92)

where m is an integer.

Logarithmic Decrement

take $\ln (\log_e)$ both sides

 $\approx 2\pi\zeta$ for $\zeta < 0.2$

Universiti Malaysia **Logarithmic Decrement** PAHÁNG 1 0.8 X_1 0.6 Example 0.4 X6 0.2 ampiltude $X_1 = 0.68$ 0 -0.2 $X_6 = 0.12$ -0.4 $\frac{1}{5}\ln\left(\frac{0.68}{0.12}\right)$ -0.6 $\approx 2\pi\zeta$ -0.8 -1 0.1 0.2 0.5 0.7 0.8 0.3 0.4 0.6 0.9 0

time - seconds

Logarithmic Decrement

Damping ratio (for many structural $0.001 \le \zeta \le 0.05$

% critical damping

$0.1\% \le \zeta \le 5\%$

Exercise

Problem 2.98 (S.S. Rao 5th Ed)

- The ratio of successive amplitudes of a viscously damped single-degree-of-freedom system is found to be 18:1. Determine the ratio of successive amplitude if the amount of damping is
- (a) double
- (b) halve

solution

$$\ln \frac{x_1}{x_2} = \ln \frac{18}{1} = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}} \Longrightarrow \zeta = 0.4179$$

(a) If damping is doubled

$$\ln \frac{x_1}{x_2} = \frac{2\pi\zeta_{new}}{\sqrt{1 - \zeta_{new}^2}} = \frac{2\pi(0.8358)}{\sqrt{1 - (0.8358)_{new}^2}} \Longrightarrow \frac{x_1}{x_2} = 14265.362$$

(a) If damping is halved

$$\ln \frac{x_1}{x_2} = \frac{2\pi\zeta_{new}}{\sqrt{1 - \zeta_{new}^2}} = \frac{2\pi(0.2090)}{\sqrt{1 - (0.2090)^2}} \Longrightarrow \frac{x_1}{x_2} = 3.8296$$

Problem 2.103 (S.S. Rao 5th Ed)

- For a spring-mass-damper system, m = 50 kg and k=5000N/m. Find the following:
 - Critical damping constant Cc
 - Damped natural frequency when c = Cc/2
 - Logarithmic decrement.

Solution

$$m = 50 \text{ kg}, \quad k = 5000 \text{ N/m}$$

 $C_c = 2m\omega_n = 2m\sqrt{\frac{k}{m}} = 2\sqrt{km} = 2\sqrt{5000 \times 50} = 1000 \text{ N-s/m}$

 $c = C_c / 2 = 1000 / 2 = 500 \text{ N} - \text{s/m}$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = \sqrt{\frac{k}{m} \left(1 - \left(\frac{c}{C_c}\right)^2\right)} = \sqrt{\frac{5000}{50} \left(1 - \left(\frac{500}{1000}\right)^2\right)} = 8.6603 \text{ rad/s}$$

$$\delta = \frac{2\pi}{\omega_d} \left(\frac{c}{2m}\right) = \frac{2\pi}{8.6603} \left(\frac{500}{2 \times 50}\right) = 3.6276$$

REVIEW

For Case $\zeta < 1$ $x(t) = e^{-\zeta \omega_n t} \left\{ x_0 \cos \sqrt{1 - \zeta^2} \omega_n t + \frac{\dot{x}_0 + \zeta \omega_n x_0}{\sqrt{1 - \zeta^2} \omega_n} \sin \sqrt{1 - \zeta^2} \omega_n t \right\}$ For Case $\zeta = 1$ $x(t) = \left[x_0 + (\dot{x}_0 + \omega_n x_0) t \right] e^{-\omega_n t}$

For Case

 $\zeta > 1$

 $\begin{aligned} x(t) &= \left(\frac{x_0 \omega_n \left(\zeta + \sqrt{\zeta^2 - 1}\right) + \dot{x}_0}{2\omega_n \sqrt{\zeta^2 - 1}}\right) e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} \\ &+ \left(\frac{-x_0 \omega_n \left(\zeta - \sqrt{\zeta^2 - 1}\right) - \dot{x}_0}{2\omega_n \sqrt{\zeta^2 - 1}}\right) e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t} \end{aligned}$

Exercise

Problem 2.104 (S.S. Rao 5th Ed.)

 A railroad car of mass 2000kg travelling at a velocity v=10m/s is stopped at the end of the tracks by a spring damper system as shown in the figure. If the stiffness of the spring is k=40N/mm and the damping constant is c = 15 N-s/mm, determine (a) the maximum displacement of the car after engaging the spring and damper and (b) the time taken to reach the maximum displacement.

Solution

$$m = 2000 \text{ kg}, \quad v = \dot{x}_0 = 10 \text{ m/s}, \quad k = 40 \text{ N/mm} = 40000 \text{ N/m}$$

$$c = 15 \text{ N} - \text{s/mm} = 15000\text{ N} - \text{s/m}$$

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{40000}{2000}} = 4.4721 \text{ rad/s}$$

$$C_c = 2m\omega_n = 2(2000)(4.4721) = 17884 \text{ N} - \text{s/m}$$

$$\zeta = \frac{c}{C_c} = \frac{15000}{17884} = 0.8387 \quad \text{(Under damped)}$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = 4.4721 \sqrt{1 - (0.8387)^2} = 2.4346 \text{ rad/s}$$

$$\tau_d = \frac{2\pi}{\omega_d} = \frac{2\pi}{2.4346} = 2.5807 \text{ sec}$$

For
$$x_0 = 0$$
, and $\dot{x}_0 = 10$ m/s

$$x(t) = e^{-\zeta\omega_{n}t} \left\{ x_{0} \cos\sqrt{1-\zeta^{2}} \omega_{n}t + \frac{\dot{x}_{0} + \zeta\omega_{n}x_{0}}{\sqrt{1-\zeta^{2}} \omega_{n}} \sin\sqrt{1-\zeta^{2}} \omega_{n}t \right\}$$
$$x(t) = e^{-\zeta\omega_{n}t} \left\{ \frac{\dot{x}_{0}}{\sqrt{1-\zeta^{2}} \omega_{n}} \sin\sqrt{1-\zeta^{2}} \omega_{n}t \right\}$$
$$At \ x_{\max}, \ \omega_{n}t = \frac{\pi}{2} \ \text{and} \ \sin\omega_{n}\sqrt{1-\zeta^{2}}t = 1$$
$$x_{\max} = e^{-(0.8387)\left(\frac{\pi}{2}\right)} \left\{ \frac{10}{\sqrt{1-(0.8387)^{2}}(4.4721)}(1) \right\} = 1.1001 \text{ m}$$

$$\omega_n t = \frac{\pi}{2} \Longrightarrow t = \frac{\pi}{2\omega_n} = \frac{\pi}{2 \times 4.471} = 0.3513 \text{ sec}$$

Thank You

Che Ku Eddy Nizwan Bin Che Ku Husin Faculty of Mechanical Engineering Universiti Malaysia Pahang

E-mail: <u>eddy@ump.edu.my</u> Tel: +09-424 6217 Focus Group Website: <u>www.asivr.ump.edu.my</u>

