Universiti Malaysia PAHANG
Engineering • Technology • Creativity

FACULTY OF MECHANICAL ENGINEERING MID-SEMESTER EXAMINATION

COURSE	$:$	PRODUCTION PLANNING AND CONTROL
COURSE CODE	$:$	BMM4823
LECTURER	$:$	AHMAD NASSER MOHD ROSE
DATE	$:$	30 MARCH 2017
DURATION	$:$	2 HOURS
SESSION/SEMESTER	$:$	SESSION 2016/2017 SEMESTER II
PROGRAMME CODE	$:$	BMM

INSTRUCTIONS TO CANDIDATE:

1. This examination paper consists of TWO questions. Answer ALL questions.
2. All answers to a new question should start on a new page.
3. All calculations and assumptions must be clearly stated.
4. Candidates are not allowed to bring any material other than those allowed by the invigilator into the examination room.
5. The question should be answered in English.

EXAMINATION REQUIREMENTS:

Table of formulae

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO
This examination paper consists of FIVE (5) printed pages including the front page

QUESTION 1 [30 Marks]

a) Describe how Delphi method could be applied for new product sales projection on;
i) Drinking water or;
ii) Self service laundry centre
(5 Marks)
b) Pekan Post Office experiences a seasonal pattern of daily mail volume every week. Table Q1a shows the data for two representative weeks, expresses in thousands of pieces of mail.

Table Q1a Volume of mail (1000)

Day	Week 1	Week 2	Week 3
Sunday	5	8	15
Monday	20	15	15
Tuesday	30	32	36
Wednesday	35	30	28
Thursday	49	45	40
Friday	70	70	70
Saturday	15	10	10
Total	224	210	214

i) Calculate a seasonal factor for each day of the week.
(4 Marks)
ii) If the postmaster estimates 230,000 pieces of mail to be sorted next week, forecast the volume for each day of the week.
(10 Marks)
c) Currently, Pekan Pos Laju department has received an increasing number of customers in the last 5 months. Therefore, as to ensure the department is able to fulfil the customer charter on service speed, the Planning Manager asking you to forecast for the next month. Based on previous data, the sales department decided α is 0.2 and $\beta 0.5$ with initial forecast for the $1^{\text {st }}$ month is 41 . Table Q2b shows the last data on number of customer that deal with courier service. Assume the initial forecast for the last month was 11 units and the trend over that period was 3 units.
i) Compute the forecast sales for month 6 .
ii) Comment the forecasting errors by using Mean Absolute Deviation.
(5 Marks)
Table Q2b Previous data customer

Month	No of customer
1	45
2	50
3	52
4	56
5	58
6	$?$

QUESTION 2[30 Marks]

a) Briefly discuss how sales and operation planning could assist manufacturing companies to make a production plan.
b) The Meera Jati has projected the demand for their dining room table as in Table Q2a. Assume 4 weeks per month. All production information as highlighted in Table Q2b and Table Q2c. As a production planner, you are required to calculate the additional cost involve in three different strategies.
i) Compute the extra cost to meet all demand by using level strategy of 760 units per month. You are allowed to use hiring, firing and overtime. Shortages are not allowed.
(10 Marks)
ii) Compare the extra cost in c (i) and (ii) with the cost of using hiring or firing and subcontracting, with no overtime and inventory.
(10 Marks)
iii) Propose three actions for further improvement in cost performance.

Table Q2a: The demand for 6 month

Month	Demand
1	740
2	720
3	860
4	900
5	810
6	700

Table Q2b: Production capability and additional cost

Current employees	20 workers
Production per employee (regular time)	10 tables per week
Overtime	2 tables per worker per week
Overtime	Additional RM40 per table
Subcontracting	Additional RM50 per table
Hiring cost	RM2000 per worker
Firing cost	RM3000 per worker
Holding cost	RM10 per table per month

Exponential smoothing

$$
F_{t}=F_{t-1}+\alpha\left(A_{t-1}-F_{t-1}\right)
$$

Forecasting Errors

$\mathrm{MAD}=\quad \sum \mid$ Actual - Forecast \mid
n

MAPE $=\frac{\sum_{i=1}^{n} 100 \mid \text { Actual }_{i}-\text { Forecast }_{i} \mid / \text { Actual }_{i}}{n}$

$$
\text { MSE }=\frac{\sum(\text { Forecast Errors })^{2}}{n}
$$

Adjusted Exponential Smoothing

$$
\begin{aligned}
& F_{t}=\alpha\left(A_{t-1}\right)+(1-\alpha)\left(F_{t-1}+T_{t-1}\right) \\
& T_{t}=\beta\left(F_{t}-F_{t-1}\right)+(1-\beta) T_{t-1} \\
& \mathrm{FIT}_{\mathrm{t}}=\mathrm{F}_{\mathrm{t}}+\mathrm{T}_{\mathrm{t}}
\end{aligned}
$$

Least squares method

$$
\begin{array}{ll}
y=a+b x & b=\frac{\Sigma x y-n x \bar{y}-}{\Sigma x^{2}-n x^{2}} \\
a=\bar{y}-b \bar{x} &
\end{array}
$$

Correlation coeficient

$$
r=\frac{n \Sigma x y-\Sigma x \Sigma y}{\sqrt{\left[n \Sigma x^{2}-(\Sigma x)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]}}
$$

Inventory Management

$$
\begin{gathered}
2 D S=Q^{2} H \\
Q^{2}=2 D S / H \\
Q^{*}=\sqrt{2 D S / H}
\end{gathered}
$$

