Production Planning \& Control BMM4823

Material Requirement Planning

by
Dr. Ahmad Nasser Mohd Rose nasser@ump.edu.my

Chapter Description

- Aims
- To understand the control systems of Material Requirement Planning (MRP), material resource planning (MRPII) and Enterprise Resource Planning (ERP)
- To apply MRP in production system by calculating the requirement of raw materials or parts
- Expected Outcomes
- Able to apply MRP system for production planning
- Able to apply lot sizing techniques in computing the required parts
- Able to differentiate between MRP, MRPII and ERP.
- References
- Heizer, J and Render,B. 2011. Principles of Operations Management, $8^{\text {th }}$ Edition, Pearson Prentice Hall, Inc.

Introduction

A control system on inventory by using computer

Determine parts, components and materials to be manufactured or ordered

Data system should be accurate

Master production schedule to time phased requirement

Dependent demand

Dependent demand

The demand is related to each demand of related item

End item demand will determine the demand for others

MRP depends of dependent demand

Master Production Schedule (MPS)

Is an overall plan for production within a certain period

It is based on customer orders, sales orders and forecast

It is specify what to be made and when to produce it

Normally from MPS will transfer to MRP

Running by weekly compared to MRP by daily

MRP Structure

Data Files

Source : Heizer \& Render 2011

Master Planning Schedule

Make to order

Assemble to stock

Make to stock

Aggregate Production Planning

Part of production control on;

Time phased
Production rates
Workforce level
Inventory planning
Capacity limitation
Overtime
Subcontract

Aggregate Production Plan

Production plan based Television Model

Month	January		February					
Television	1000							
Weeks	1	2	3	4	1	2	3	4
14 in	100		100	100	100	100	100	100
29 in	200		200		150			150
32 in	100	100		100	200	200	200	200

Bill of Materials (BOM)

- Detail list of components or parts to be assembled into a product
- Item above - called parent
- Item below - called children
- Simple and easy to understand

Bill of Materials (BOM)

Bill of Materials (BOM)

Part B:	2 x number of $\mathrm{As}=$	(2)(50) $=$	00
Part C:	$3 \times$ number of As =	(3)(50) =	300
Part D:	$2 x$ number of Bs $+2 x$ number of F	(2)(100)	
Part E:	$2 x$ number of $B s$ + 2 x number of C	$(2)(100)+$	500
Part F:	2 x number of Cs =	(2)(150) $=$	300
Part G:	1 x number of Fs =	$(1)(300)=$	300

Time Phased

Gross Requirement

- To know how many parts required by the production
- When the ordered need to released?
- When the ordered should be received?
- As example if A required in week 8 , the product need to be assembled in week 7 with 1 week lead time.
- This is called lead time offset or time phasing

Gross Requirement

- Let say $A=50$ units
- $\mathrm{B}=2 \times 50=100$ units
- $\mathrm{C}=3 \times 50=150$ units
- Therefore the production has to provide components B and C one week before the required date of A.
- The right order quantity for B and C are determined by the order released of the parent(s)

TABLE 14.3 G	Gross Material Requirements Plan for 50 Awesome Speaker Kits (As) with Order Release Dates Also Shown								
	WEEK								LEAD
	1	2	3	4	5	6	7	8	TIME
A. Required date Order release date							50	50	1 week
B. Required date Order release date					100		100		2 weeks
C. Required date Order release date						150	150		1 week
E. Required date Order release date			200	300	200	300			2 weeks
F. Required date Order release date			300			300			3 weeks
D. Required date Order release date		600	600	200	200				1 week
G. Required date Order release date	300		300						2 weeks

Lot-forLot	1	20	-	-	1	C	Gross Requirements							120^{4}	
							Scheduled Receipts								
							Projected On Hand 20	20	20	20	20	20	20	20	
							Net Requirements							100	
							Planned Order Receipts							100	
							Planned Order Releases						100		

Lot Sizing techniques

- Lot for lot - also considered as a chase demand
- Economic order quantity (EOQ)
- Period order quantity
- Varies quantity with consistent time interval
- Use EOQ for time between orders (TBO)
- Depends on coverage period

Lot for Lot

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Gross requirement	$\mathbf{4 0}$	$\mathbf{3 5}$	$\mathbf{4 5}$	$\mathbf{0}$	$\mathbf{1 5}$	$\mathbf{4 5}$	$\mathbf{3 5}$	$\mathbf{0}$	$\mathbf{3 5}$	$\mathbf{6 0}$
Schedule receipt										
Projected in hand -40										
Net requirement	0	35	45	0	15	45	35	0	35	60
Plan order receipts		35	45	0	15	45	35	0	35	60
Plan order release	35	45	0	15	45	35	0	35	60	

Lot for Lot

No on-hand inventory is carried through the system Total holding cost $=$ RMO

There are seven setups for this item in this plan Total setup cost $=7 \times$ RM100 $=$ RM700

Economic Order Quantity (EOQ)

	1	2	3	4	5	6	7	$\mathbf{8}$	9	10
Gross requirement	$\mathbf{4 0}$	$\mathbf{3 5}$	$\mathbf{4 5}$	$\mathbf{0}$	$\mathbf{1 5}$	$\mathbf{4 5}$	$\mathbf{3 5}$	$\mathbf{0}$	$\mathbf{3 5}$	$\mathbf{6 0}$
Schedule receipt										
Projected in hand -40			43	76	61	16	16	59	24	24
Net requirement	0	35	2				19			36
Plan order receipts		78	78				78			78
Plan order release	78	78				78			78	

Holding cost = RM2/week; Setup cost = RM100 Average weekly gross requirement $=30 \mathrm{EOQ}=78$

Economic Order Quantity (EOQ)

Annual demand (30 x52 weeks) $=1,560$
Total cost $=$ setup cost $\boldsymbol{+}$ holding cost
Total cost $=(1,560 / 78) x$ RM100 $+(78 / 2) x($ RM2 $x 52$ weeks)

Total cost $=$ RM6056

Cost for 10 weeks = RM6056 x (10 weeks/52 weeks) = RM1165

Period Order Quantity (POQ)

	1	2	3	4	5	6	7	$\mathbf{8}$	9	10
Gross requirement	$\mathbf{4 0}$	$\mathbf{3 5}$	$\mathbf{4 5}$	$\mathbf{0}$	$\mathbf{1 5}$	$\mathbf{4 5}$	$\mathbf{3 5}$	$\mathbf{0}$	$\mathbf{3 5}$	$\mathbf{6 0}$
Schedule receipt										
Projected in hand -40			45			80	35			60
Net requirement	0	35	0	0	15	0	0	0	35	0
Plan order receipts		80			95				95	
Plan order release	80			95				95		

$$
\begin{aligned}
\mathrm{POQ} & =\mathrm{EOQ} / \text { Average weekly usage } \\
& =78 / 30 \\
& =2.6 \\
& =3 \text { weeks period }
\end{aligned}
$$

Period Order Quantity (POQ)

Setups = $3 x$ RM100 $=$ RM300
Holding cost $=(45+80+35+60)$ units x RM2 $=$ RM440 Total cost $=$ RM300 + RM440 $=$ RM740

Lot sizing

- Lot for lot = RM700
- EOQ = RM775
- POQ = RM740
- Therefore, the minimum is lot for lot method.
\checkmark Recompute the lot size when there is a change on order quantity
\square Lot sizes should be always recomputed whenever there is a lot size or order quantity change
\square In practice, this results in system nervousness and instability
\square Lot-for-lot is suitable during good economy.
\square Lot sizes can be changed to allow for any adjustments due to parts management.

MRPII

- Is called as material resource planning
- Is an extension of MRP
- Integrated method of operational and financial planning for manufacturing companies
- Is considered as a closed loop manufacturing resource planning

		Week			
		5	6	7	8
	Units (lead time 1 week)				100
	Labor: 10 hours each				1,000
	Machine: 2 hours each				200
	Payable: \$0 each				0
	Units (lead time 2 weeks,				
	2 each required)			200	
	Labor: 10 hours each			2,000	
	Machine: 2 hours each			400	
	Payable: Raw material at \$5 each			1,000	
C.	Units (lead time 4 weeks,				
	3 each required)	300			
	Labor: 2 hours each	600			
	Machine: 1 hour each	300			
	Payable: Raw material at \$10 each	3,000			

Enterprise Resource Planning (ERP)

- Is an integration system within the organisation
- Sharing data bases to related department
- Easy and fast to access related data
- Synchronized reporting and automation.
- Real time reporting
- Save time
- Fast decision

Enterprise Resource Planning (ERP)

- Integration of various modules
- MRP
- Finance
- Human resource
- Manufacturing
- Inventory control
- Material purchasing

Enterprise Resource Planning Systems

Advantages of ERP system

- Easily to monitor the current information
- Sharing databases to others
- Effective communication through reliable information
- Effective measurement company performance
- Immediately accessible

Differences

MRP	MRPII	ERP
To know the available parts in the warehouse	Include the machine capacity scheduling Quality assurance	Include all organisation system such as; Human Resource
parts To know when to order parts		Financial system Material management Procurement

