Technical Informatics I

Arithmetic operations and math functions

by
Dr. Fatimah
Faculty of Mechanical Engineering
fatimahd@ump.edu.my

Arithmetic operations and math functions

- Aims
- Introduce students to arithmetic operations, the header file math.h and math functions
- Expected Outcomes
- Students are able to construct simple C programs that can implement arithmetic operations with appropriate operators and precedence
- Students are able to construct simple C programs involving various math functions
- References
- Harry H. Cheng, 2010. C for Engineers and Scientists: An Interpretive Approach, McGraw Hill

Content

- Arithmetic Operations and Precedence
- Math Functions
- Examples
- Conclusion

Arithmetic Operations

Operator	Description
+	Addition
-	Subtraction
*	Multiplication
/	Division
$\%$	Modulus

- Notes on the \% operator:
- The operands of the \% operator should be of type int and will return the remainder.
- If the value of the second operand is zero, the behavior is undefined.
For example: $9 \% 3=0,6 \% 9=6,10 \% 3=1$

Arithmetic Operations

- The order of data type is: char -> int -> float -> double.
- Here char takes less memory while double takes the most memory
- You may convert a data type that occupies less memory to a data type that occupies more memory space without any loss.
- However, the resultant data type depends on the operations and algorithms
- For binary operations, such as +,-,/,*, the resultant data type will take the higher order data type of two operands.
- The addition of two double will result in a double
- The addition of an int and a double will result in a double.

Arithmetic Operations

- Example:

```
#include<stdio.h>
- int main() {
    int i = 10; /*initialize i=10*/
    printf("5*i=%d\n",5*i); /*multiplication with an int*/
    printf("19/5=%d\n",19/5); /*division between 2 ints results in an int*/
    printf("19.0/5=&f\n",19.0/5); /*division of a double with an int results in a double*/
    printf("19/5.0=%f\n",19/5.0); /*division of an int with a double results in a double*/
    printf("19%%5=%d\n",19%5); /*remainder of 19 divide by 5*/
return 0;
}
>ch -u "MA15024.c"
5*i=50
19/5=3
19.0/5=3.800000
19/5.0=3.800000
19%5=4
>Exit code: 0

\section*{Arithmetic Operations}
- The list of operators are shown on right.
- Operators at the higher level has precedence over operators at the lower level.
\begin{tabular}{|c|c|}
\hline Operations & Associativity \\
\hline : & Left to right \\
\hline () [] & Right to left \\
\hline function name() & Left to right \\
\hline -> & Right to left \\
\hline \[
\begin{aligned}
& \text { ! }++--+{ }^{*} \\
& \text { \& (type) sizeof }
\end{aligned}
\] & Left to right \\
\hline * / \% .* ./ & Left to right \\
\hline \(+\quad-\) & Left to right \\
\hline << >> & Left to right \\
\hline \(\ll=\gg=\) & Left to right \\
\hline == ! = & Left to right \\
\hline \& & Left to right \\
\hline \(\wedge\) & Left to right \\
\hline I & Left to right \\
\hline \& \& & Left to right \\
\hline \(\wedge \wedge\) & Left to right \\
\hline 11 & Left to right \\
\hline ? : & Right to left \\
\hline \[
\begin{array}{llll}
= & += & -= & *= \\
\%= & \mid= & \ll= & \gg=
\end{array}
\] & Right to left \\
\hline , & Right to left \\
\hline
\end{tabular}

\section*{Arithmetic Operations}

\section*{Example 1:}
\(i=2+3 * 4\)
\begin{tabular}{|c|c|}
\hline Operations & Associativity \\
\hline : : & Left to right \\
\hline () [] & Right to left \\
\hline function name() & Left to right \\
\hline . -> & Right to left \\
\hline \[
\begin{aligned}
& \text { ! }++--+{ }^{*} \\
& \text { \& (type) sizeof }
\end{aligned}
\] & Left to right \\
\hline * / \% .* ./ & Left to right \\
\hline \(+\quad-\) & Left to right \\
\hline << >> & Left to right \\
\hline \(\ll=\gg=\) & Left to right \\
\hline == ! = & Left to right \\
\hline \& & Left to right \\
\hline \(\wedge\) & Left to right \\
\hline । & Left to right \\
\hline \& \& & Left to right \\
\hline \(\wedge \wedge\) & Left to right \\
\hline 11 & Left to right \\
\hline ? : & Right to left \\
\hline \[
\begin{aligned}
& =\quad+=\quad-=\quad \star=\quad /= \\
& \%=\quad \mid=\quad \ll=\quad \gg=
\end{aligned}
\] & Right to left \\
\hline , & Right to left \\
\hline
\end{tabular}

\section*{Arithmetic Operations}

\section*{Example 1:}
\[
\begin{aligned}
i & =2+3 \star 4 \\
& =2+12
\end{aligned}
\]


\section*{Arithmetic Operations}

\section*{Example 1:}

Followed by the operator + .
The operator = the lowest in the expression \(\mathrm{i}=2+3 * 4\) :


The order of the precedence for the operators here are: \({ }^{*},+\), and \(=\).
\begin{tabular}{|c|c|}
\hline Operations & Associativity \\
\hline : : & Left to right \\
\hline () [] & Right to left \\
\hline function name () & Left to right \\
\hline . -> & Right to left \\
\hline \[
\begin{aligned}
& \text { ! }++--+{ }^{+} \\
& \text {\& (type) sizeof }
\end{aligned}
\] & Left to right \\
\hline * / \% .* ./ & Left to right \\
\hline + - & Left to right \\
\hline << >> & Left to right \\
\hline \(\ll=\gg=\) & Left to right \\
\hline == ! = & Left to right \\
\hline \& & Left to right \\
\hline \(\wedge\) & Left to right \\
\hline । & Left to right \\
\hline \& \& & Left to right \\
\hline \(\wedge \wedge\) & Left to right \\
\hline | | & Left to right \\
\hline ? : & Right to left \\
\hline \[
\begin{aligned}
& =\quad+=\quad-=\quad *=\quad /= \\
& \%=\quad \mid=\quad \ll=\quad \gg=
\end{aligned}
\] & Right to left \\
\hline ' & Right to left \\
\hline
\end{tabular}

\section*{Arithmetic Operations}


Technical Informatics 1: Dr Fatimah

\section*{Header file math. h}
- The math. \(h\) header defines various mathematical functions
- All the functions available in this library take double as an argument and returns double as the result.

\section*{Library functions in math . h}
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ function } & description \\
\hline \(\cos (x)\) & Returns the cosine of a radian angle \(x\). \\
\hline \(\sin (x)\) & Returns the sine of a radian angle \(x\). \\
\hline \(\tan (x)\) & Returns the tan of a radian angle \(x\). \\
\hline \(\log (x)\) & Returns the natural logarithm (base-e logarithm) of \(\mathbf{x}\). \\
\hline \(\log 10(x)\) & Returns the common logarithm (base-10 logarithm) \\
\hline of \(\mathbf{x}\).
\end{tabular}
*please refer to https://en.wikibooks.org/wiki/C Programming/C Reference/math.h for the complete list

\section*{Math Functions}

Example 1: Calculate the following:
\[
p=2^{3} \quad \text { and } \quad \sqrt{x}
\]

Write a program to solve for \(p=2^{3}\) and \(\sqrt{x}\)

Note: there is no exponential operator in C so you should use the mathematical function:
- pow (x,y) to calculate the exponential expression \(x^{y}\)
- sqrt (x) to calculate \(\sqrt{x}\)

These functions are declared inside the header file math.h

\section*{Math Functions}

\section*{Example 1:}

```

>ch -u "MA15024.c"
pow (2,3) = 8.000000
sqrt(2) = 1.414214
>Exit code: 0

```

\section*{Math Functions}

\section*{Example 1:}

```

>ch -u "MA15024.c"
pow (2,3) = 8.000000
sqrt(2) = 1.414214
>Exit code: 0

```

Technical Informatics 1: Dr Fatimah

\section*{Math Functions}

Example 2: Write a program to solve the roots of the quadratic function
\[
x^{2}-5 x+6=0
\]

Recall that the roots of the quadratic function,
\[
a x^{2}+b x+c=0
\]

Is given by:
\[
\begin{aligned}
& x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
& x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
\]

\section*{Math Functions}

\section*{Example 2:}


\section*{Math Functions}

\section*{Example 2:}


\section*{Math Functions}

Example 2: Write a C program to calculate the side c, given: \(\quad a=10 \mathrm{~cm}, \alpha=10^{\circ}, \gamma=60^{\circ}\)

\[
\frac{a}{\sin (\alpha)}=\frac{b}{\sin (\beta)}=\frac{c}{\sin (\gamma)}
\]

\section*{Math Functions}

Example 2: You need to first rearrange the sin law:

\[
\frac{a}{\sin (\alpha)}=\frac{b}{\sin (\beta)}=\frac{c}{\sin (\gamma)}
\]

Note:
1. Trigonometric functions such as for sine, cosine, \(\sin (x)\), \(\cos (x)\), \(\tan (x)\) are declared in the header file math. \(h\)
2. Recall that these functions return a value of type double
3. The unit for the argument of trigonometric functions is in radians, not in degree. So you need to convert the values of \(\boldsymbol{\alpha}\) and \(\boldsymbol{\gamma}\)
- To do this, we have defined a constant \(\pi\) using \#define:
```

\#defined PI 3.14159265359

```

\section*{Math Functions}

\section*{Example 3:}
```

1 /* File: sinelaw.c */
\#include <stdio.h>
\#include <math.h>
\#define PI 3.14159265358979323846

- int main() {
double c, a, alpha, gamma;
a = 10; /*side a*/
alpha=90*PI/180; /*convert from degree to radians*/
gamma = 60*PI/180; /*convert from degree to radians*/
c = a*sin(gamma)/sin(alpha);
printf("c = %f\n",c);
return 0;
}
<

```
```

>ch -u "lecture4test.c"
c = 8.660254
>Exit code: 0

```

\section*{Conclusion}
- Conclusion \#1
- Be careful with precedence when dealing with operators
- Conclusion \#2
- In order to use math functions, you need to include the header file math. \(h\)
- The math functions return a double
- The units of the trigonometric functions in math. \(h\) is in radians. So if the units is in degree it must be converted to radians

\title{
Technical Informatics I
}

\section*{Lecture 3}

\author{
Dr Fatimah
}```

