

Principles of Communication Systems

Chapter 2 (part 2): AM Variations

Nurulfadzilah Hasan
Faculty of Electrical & Electronics Engineering
nurulfadzilah@ump.edu.my

Chapter 2

- 2.4 Double side band, single side band and vestigial side band
- 2.5 Suppressed carrier AM

Learning Outcomes

- By the end of this chapter, you should be able to:
 - Solve problems involving AM: SSB, DSB and VSB
 - Compare SSB transmission to conventional DSB

Full carrier AM: Frequency Domain

Power Relationship

$$P_T = P_c + P_{USB} + P_{LSB}$$

Transmission efficiency, η for AM:

$$\eta = \frac{P_{SB}}{P_T} \times 100\%$$

$$P_{SB} = P_{USB} + P_{LSB} = \frac{m^2}{4} P_c + \frac{m^2}{4} P_c = \frac{m^2}{2} P_c$$

$$\eta = \frac{\frac{m^2 P_c}{2}}{P_c \left(1 + \frac{m^2}{2}\right)} \times 100\% = \frac{m^2}{2 + m^2} \times 100\%$$

Principles of Communicartion System by N Hasan

Power Relationship

If m = 1 (100% modulation),

- the average power, $P_{SB} = 50\% P_c = P_c/2$
- Transmission efficiency becomes:

$$\eta = \frac{m^2}{2 + m^2} \times 100\% = \frac{1}{2 + 1} \times 100\% = 33.33\%$$

AM power efficiency Problems:

- Information are contained in the sidebands, not in the carrier
- But carrier signal occupies 67% of total power: most of the power is wasted in the carrier signal
- Also, the upper and lower sidebands are mirror images of each other: carries exactly the same information.
- SOLUTION?
 - remove the carrier and/or one of its sidebands
 - Suppressed Carrier AM System
 - Remove one of the sidebands
 - Single sideband AM system

Variations of AM

1) Double sideband full carrier (DSBFC)

- Contains USB, LSB and Carrier
- This is the most widely used type of AM modulation. In fact, all radio channels in the AM band use this type of modulation.

2) Double sideband suppressed carrier (DSBSC)

- Contains only USB & LSB
- A circuit that produces DSBSC is Balanced modulator

3) Single sideband (SSB)

- In this modulation, only half of the signal of the DSBSC is used
- Contains either LSB or USB
- · Produce efficient system in term of power consumption and bandwidth

4) Vestigial Sideband (VSB):

This is a modification of the SSB to ease the generation and reception of the signal.

Variations of AM

 $P_c = V_c^2 / R$

DSBFC AM

SSBFC AM

$$P_c = V_c^2 / R$$

$$P_{usb} = (m^2 P_c / 4)$$

$$V_{usb} = (m^2 P_c / 4)$$

$$V_{usb} = (m^2 P_c / 4)$$

$$V_{usb} = (m^2 P_c / 4)$$

SSBSC AM

$$P_{c} = 0$$

$$P_{lsb} = 0$$

$$USB$$

$$P_{usb} = (m^{2} P_{c} / 8) = P_{T}$$

VSB AM

$$P_{lsb} = \langle P_{usb} | P_{usb} = (m^2 P_c / 4)$$

$$USB$$

$$P_T = P_c + m^2 P_c / 4 + P_{lsb}$$

Hasan

DSB Suppressed Carrier (DSBSC)

Generated by circuit called balanced modulator where it produces sum (f_{usb}) and difference (f_{lsb}) freq but cancel or balance out the carrier (f_c) .

DSBSC helps in reducing power but bandwidth still the same as DSBFC.

Suppressing the carrier

Double-sideband suppressed carrier (DSSC or DSB) envelope:

Full carrier AM signal

Suppressed carrier AM signal

AM DSBSC Equation:

From full AM equation:

$$v_{DSBSC}(t) = Ec\sin\omega_c t + \frac{mEc}{2}\cos(\omega_c - \omega_m)t + \frac{mE_c}{2}\cos(\omega_c + \omega_m)t$$

Remove the carrier signal, the equation becomes:

$$v_{DSBSC}(t) = \frac{mEc}{2} \cos(\omega_c - \omega_m)t + \frac{mE_c}{2} \cos(\omega_c + \omega_m)t$$

AM DSBSC Power distribution

$$P_{T} = P_{LSB} + P_{USB}$$

$$= \frac{V_{LSB_{rms}}^{2}}{R} + \frac{V_{USB_{rms}}^{2}}{R}$$

$$= \frac{\left(\frac{E_{m}}{2\sqrt{2}}\right)^{2}}{R} + \frac{\left(\frac{E_{m}}{2\sqrt{2}}\right)^{2}}{R}$$

$$= \frac{E_{m}^{2}}{8R} + \frac{E_{m}^{2}}{8R}$$

$$= \frac{E_{m}^{2}}{4R}$$

In DSBSC, all the power transmitted is sidebands power.

If R = 1 ohm.

$$\begin{vmatrix} P_T & = & \frac{E_m^2}{4} \\ P_T & = & P_{SB} \end{vmatrix}$$

Therefore the efficiency, $\eta = 100\%$

Single-Sideband Modulation

Single-sideband suppressed carrier (SSBSC): the carrier and one sideband is suppressed

All power is channeled into a single sideband, producing stronger signal

Bandwidth is narrower and noise in the signal is reduced.

But the signals are difficult to demodulate at the receiver.

A low power, **pilot carrier** is sometimes transmitted along with sidebands to help demodulation process at the receiver

AM SSBSC Equation:

From full AM equation:

$$v_{DSBSC}(t) = Ec\sin\omega_c t + \frac{mEc}{2}\cos(\omega_c - \omega_m)t + \frac{mE_c}{2}\cos(\omega_c + \omega_m)t$$

Remove the carrier signal, and one of the sideband, the equation becomes:

LSB:
$$v_{LSB}(t) = \frac{mEc}{2} \cos(\omega_c - \omega_m)t$$

USB:
$$v_{USB}(t) = \frac{mE_c}{2} \cos(\omega_c + \omega_m)t$$

Time domain SSB signals

• AM SSB-LSB

• AM SSB-USB

SSB: Signal Power Considerations

Theoretically,

$$P_{T} = P_{LSB}$$

$$= \frac{\left(\frac{E_{m}}{2\sqrt{2}}\right)^{2}}{R}$$

$$= \frac{E_{m}^{2}}{8R}$$

OR

$$P_{T} = P_{USB}$$

$$= \frac{\left(\frac{E_{m}}{2\sqrt{2}}\right)^{2}}{R}$$

$$= \frac{E_{m}^{2}}{8R}$$

Therefore the efficiency, $\eta = 100\%$

SSB: Signal Power Considerations

- In SSB, the transmitter output is better expressed in terms of peak envelope power (PEP), the maximum power produced on voice amplitude peaks.
- Carrier power is useless as a measure of the power in a DSBSC or SSBSC signal
- Why? Because it carrier power is theoretically zero.
- Instead, the peak envelope power (PEP) is used

Peak Envelope Power

 It is simply the power at modulation peaks, calculated using RMS formula:

$$PEP = \frac{\binom{Vp}{\sqrt{2}}^2}{R_L} = \frac{V_{rms}^2}{R_L}$$

PEP = peak envelope power in Watts

V_p = peak signal voltage in volts

R_L = load resistance in ohms

Vestigial sideband (VSB) transmission

- Vestigial sideband (VSB) transmission: Modified AM
 <u>transmission</u> in which one <u>sideband</u>, the <u>carrier</u>, and only a
 portion of the other sideband are transmitted
- This kind of signal is used in TV transmission.
- The BW is typically 25% greater than that of SSBSC.

Collaborative authors:

Nurulfadzilah Binti Hasan Noor Zirwatul Ahlam Binti Naharuddin Norhadzfizah Binti Mohd Radi Mohd Hisyam Bin Mohd Ariff

Faculty of Electrical & Electronics Engineering, UMP