

DIGITAL SIGNAL PROCESSING

Chapter 9 Discrete Fourier Transform (DFT)

OER Digital Signal Processing by Dr. Norizam Sulaiman work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Communitising Technology

Discrete Fourier Transform

- Aims
 - To explain the characteristic of the discrete-time signal in frequency domain and perform analysis in frequency domain.
- Expected Outcomes
 - Upon completion of the topic, students should be able to convert and analyze the discrete-time signals in frequency-time domain and obtain the response of the discrete-time signal using Discrete Fourier Transform (DFT) technique.

Definition of DFT

- Discrete-time signal, *x*(n), can be analyzed in frequency domain by using analysis method called **Discrete Fourier Transform or DFT**.
- The continuous Fourier Transform is defined as below:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-j\omega t) dt$$
$$f(t) = (1/2\pi) \int_{-\infty}^{\infty} F(\omega) \exp(j\omega t) dt$$

- However, this integral equation of Fourier Transform cannot implement frequency analysis since cannot handle nature of continuous manually which just able be done by Computer, and beside that,
- Continuous nature can be handled by Computer
- Require continuous limit for integration where merely finite length sequences that can be processed by computer.

DFT Properties

Let x(n) be a finite length sequences. Thus, the N-point DFT of x(n) defined as X(k) is :

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}, k = 0, 1, ..., N-1$$

- k represents the transformation components
- n is counter of the finite length sequence
- Thus X(k) will become a complex and has real & imaginary components, hence, the components of X(k) is defined as: X(k) = real(k) + imaginary, j(k)

DFT Properties

- □ The are 4 properties of DFT:
 - 1. Periodicity

If DFT signal, X(k) is the N-point DFT of x(k), thus,

x(n+N) = x(n), for all n X(k+N) = X(k), for all k

2. Linearity

If the combination of DFT signal, $X_1(k)$ and $X_2(k)$ of the DTS signal, $x_1(n)$ and $x_2(n)$, thus,

 $ax_1(n) + bx_2(n) \stackrel{\text{DFT}}{\longleftarrow} aX_1(k) + bX_2(k)$

DFT Properties

3. Circular Shifting

The sequence of the DTS signal, x(n) of length N and the DFT of the sequence is X(k) with length of N, then, the sequence, x'(n) obtained from x(n) by shifting x(n) cyclically by m units. Then,

 $x'(n) \xleftarrow{\text{DFT}} X(k)e^{-j2\pi km/N}$

4. Parseval's Theorem

if
$$x(n) \xleftarrow{\text{DFT}} X(k)$$
 and
 $y(n) \xleftarrow{\text{DFT}} Y(k)$
thus, $\sum_{n=0}^{N-1} x(n) y^{*}(n) = 1/N \sum_{k=0}^{N-1} X(k) Y^{*}(k)$

Communitising Technology

DFT & z-Transform

• The z-transform of the sequence, *x*(n) is given by:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
, ROC include unit circle

by defining
$$z^{k} = e^{j2\pi k/N}$$
, $k = 0, 1, 2, ..., N-1$

$$X(k) = X(z) | z^{k} = e^{j2\pi k/N}$$
, $k = 0, 1, 2, ..., N-1$

$$= \sum_{n=1}^{\infty} x(n) e^{-j2\pi nk/N}$$

n=-∞

where
$$\omega_{k} = 2\pi k/N$$
, k = 0,1,2,...,N-1

DFT Example

- EXAMPLE 1: Find the DFT for the following finite length sequence, x(n) = { ¼, ¼, ¼ }
 Solution :
 - 1. Determine the sequence length, N N = 3, k = 0,1,2
 - 2. Use DFT formula to determine X(k)

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}, \ k = 0, 1, 2$$

$$X(0) = \frac{1}{4} + \frac{1}{4} = \frac{3}{4} (0.75)$$

$$X(1) = \frac{1}{4} + \frac{1}{4}e^{-j2\pi/3} + \frac{1}{4}e^{-j4\pi/3}$$

$$= \frac{1}{4} + \frac{1}{4} [\cos(2\pi/3) - j\sin(2\pi/3) + \frac{1}{4} [\cos(4\pi/3) - j\sin(4\pi/3)]$$

$$= \frac{1}{4} + \frac{1}{4} [-0.5 - j0.866] + \frac{1}{4} [-0.5 + j0.866]$$

$$= 0.25 - 0.25 = 0$$

DFT Example

• Continued from Example 1:

$$X(2) = \frac{1}{4} + \frac{1}{4} e^{-j4\pi/3} + \frac{1}{4} e^{-j8\pi/3}$$

= $\frac{1}{4} + \frac{1}{4} [\cos(4\pi/3) - j\sin(4\pi/3)] + \frac{1}{4} [\cos(8\pi/3) - j\sin(8\pi/3)]$
= 0.25 + 0.25 [-0.5 + j0.866] + 0.25[-0.5 - j0.866]
= **0**

Thus,

DFT Example

Examples 2:

Given the following the finite length sequences,

 $x(n) = \{1, 1, 2, 2, 3, 3\}$

Perform frequency analysis of the signal using DFT technique for the sequences.

Solution:

- 1. Determine the sequence length, N = 6.
- 2. Use DFT formula to determine X(k).

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}$$
, $k = 0, 1, 2, 3, 4, 5$

Convolution in DFT

□To perform convolution for DFT, need to do the following:

- 1. Find N-point DFT of the sequence h(n) and x(n).
- 2. Multiply DFT to form Y(k) = H(k)X(k)
- 3. Perform inverse DFT to obtain y(n).

Convolution in DFT : Example

Examples 3:

Find the DFT for the convolution of 2 sequences of the DTS signals as describe below: $x_1(n) = \{2, 1, 2, 1\}, x_2(n) = \{1, 2, 3, 4\}$ Solution:

- 1. Determine the sequence length for each sequence. Here, the length of both sequences, N = 4. Thus, the counter for DFT sequence, k = 0,1,2,3.
- 2. Next, perform DFT for each sequence.

(i)
$$X_1(0) = \sum_{n=0}^{3} x(n) e^{-j2\pi nk/3} = 6$$
, repeat for $X_1(1) = 0$, $X_1(2) = 2$, $X_2(3) = 0$

 $X_1(k) = \{6,0,2,0\}$

(ii) $X_2(0) = \sum_{n=0}^{3} x(n) e^{-j2\pi nk/3} 10$, repeat for $X_2(1) = -2+j2$, $X_2(2) = -2$, $X_2(3) = -2-j2$

 $X_2(k) = \{10, -2+j2, -2, -2-j2\}$

3. Perform Convolution either using graphical or mathematical method, to obtain: $X_3(k) = X_1(k) X_2(k) = \{60, 0, -4, 0\}$

DISCRETE FOURIER TRANSFORM

To analyze the discrete-time signal response and characteristic in frequency domain by using DFT method

Conclusion of The Chapter

- Able to obtain the response of the discrete-time signal using DFT technique.
- Able to perform frequency analysis of the discrete-time signal using DFT technique.
- Able to perform discrete-signal convolution using DFT technique.

Teaching slides prepared by **Dr. Norizam Sulaiman**, Senior Lecturer, Applied Electronics and Computer Engineering, Faculty of Electrical & Electronics Engineering, Universiti Malaysia Pahang, Pekan Campus, Pekan, Pahang, Malaysia

norizam@ump.edu.my

OER Digital Signal Processing by Dr. Norizam Sulaiman work is under licensed <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International</u> License.

