DIGITAL SIGNAL PROCESSING

Chapter 9 Discrete Fourier Transform (DFT)

Discrete Fourier Transform

- Aims
- To explain the characteristic of the discrete-time signal in frequency domain and perform analysis in frequency domain.
- Expected Outcomes
- Upon completion of the topic, students should be able to convert and analyze the discrete-time signals in frequency-time domain and obtain the response of the discrete-time signal using Discrete Fourier Transform (DFT) technique.

Definition of DFT

- Discrete-time signal, $x(\mathrm{n})$, can be analyzed in frequency domain by using analysis method called Discrete Fourier Transform or DFT.
- The continuous Fourier Transform is defined as below:

$$
\begin{aligned}
& F(\omega)=\int_{-\infty}^{\infty} f(t) \exp (-j \omega t) d t \\
& f(t)=(1 / 2 \pi) \int_{-\infty}^{\infty} F(\omega) \exp (j \omega t) d t
\end{aligned}
$$

- However, this integral equation of Fourier Transform cannot implement frequency analysis since cannot handle nature of continuous manually which just able be done by Computer, and beside that,
> Continuous nature can be handled by Computer
$>$ Require continuous limit for integration where merely finite length sequences that can be processed by computer.

DFT Properties

\square Let $x(\mathrm{n})$ be a finite length sequences. Thus, the N-point DFT of $x(\mathrm{n})$ defined as $\mathrm{X}(\mathrm{k})$ is :

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n k / N}, \quad \mathrm{k}=0,1, \ldots, N-1
$$

$>\mathrm{k}$ represents the transformation components
$>\mathrm{n}$ is counter of the finite length sequence
\square Thus $\mathrm{X}(\mathrm{k})$ will become a complex and has real \& imaginary components, hence, the components of $X(k)$ is defined as:

$$
X(k)=\text { real(k) + imaginary, } j(k)
$$

DFT Properties

\square The are 4 properties of DFT:

1. Periodicity

If DFT signal, $\mathrm{X}(\mathrm{k})$ is the N -point DFT of $x(\mathrm{k})$, thus,

$$
\begin{aligned}
& x(\mathrm{n}+\mathrm{N})=x(\mathrm{n}), \quad \text { for all } \mathrm{n} \\
& \mathrm{X}(\mathrm{k}+\mathrm{N})=\mathrm{X}(\mathrm{k}), \quad \text { for all } \mathrm{k}
\end{aligned}
$$

2. Linearity

If the combination of DFT signal, $\mathrm{X}_{1}(\mathrm{k})$ and $\mathrm{X}_{2}(\mathrm{k})$ of the DTS signal, $x_{1}(\mathrm{n})$ and $x_{2}(\mathrm{n})$, thus,

$$
\mathrm{a} x_{1}(\mathrm{n})+\mathrm{b} x_{2}(\mathrm{n}) \stackrel{\mathrm{DFT}}{\longleftrightarrow} \mathrm{aX}(\mathrm{k})+\mathrm{bX}(\mathrm{k})
$$

DFT Properties

3. Circular Shifting

The sequence of the DTS signal, $x(\mathrm{n})$ of length N and the DFT of the sequence is $\mathrm{X}(\mathrm{k})$ with length of N , then, the sequence, $x^{\prime}(\mathrm{n})$ obtained from $x(\mathrm{n})$ by shifting $x(\mathrm{n})$ cyclically by m units. Then,

$$
x^{\prime}(\mathrm{n}) \xrightarrow{\mathrm{DFT}} X(\mathrm{k}) \mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{~km} / \mathrm{N}}
$$

4. Parseval's Theorem

$$
\begin{aligned}
& \text { if } x(\mathrm{n}) \underset{\mathrm{DFT}}{\longleftrightarrow} \mathrm{X}(\mathrm{k}) \text { and } \\
& y(\mathrm{n}) \stackrel{\text { DFT }}{\longleftrightarrow} \mathrm{Y}(\mathrm{k})
\end{aligned}
$$

thus, $\sum_{n=0}^{N-1} x(n) y^{*}(n)=1 / N \sum_{k=0}^{N-1} x(k) Y^{*}(k)$

DFT \& z-Transform

- The z-transform of the sequence, $x(\mathrm{n})$ is given by:

$$
X(z)=\sum_{n=\infty}^{\infty} x(n) z^{-n}, \text { ROC include unit circle }
$$

by defining $z^{\mathrm{k}}=\mathrm{e}^{\mathrm{j} 2 \pi \mathrm{k} / \mathrm{N}}, \mathrm{k}=0,1,2, \ldots, \mathrm{~N}-1$
$X(k)=X(z) \mid z^{k}=e^{j 2 \pi k / N}, k=0,1,2, \ldots, N-1$

$$
=\sum_{n=-\infty}^{\infty} x(n) e^{-j 2 \pi n k / N}
$$

where $\omega_{k}=2 \pi k / N, k=0,1,2, \ldots, N-1$

DFT Example

- EXAMPLE 1:

Find the DFT for the following finite length sequence,

$$
x(\mathrm{n})=\{1 / 4,1 / 4,1 / 4\}
$$

Solution:

1. Determine the sequence length, N

$$
N=3, k=0,1,2
$$

2. Use DFT formula to determine $X(k)$

$$
\begin{aligned}
X(k)= & \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n k / N}, k=0,1,2 \\
X(0)= & 1 / 4+1 / 4+1 / 4=3 / 4(0.75) \\
X(1)= & 1 / 4+1 / 4 e^{-j 2 \pi / 3}+1 / 4 e^{-j 4 \pi / 3} \\
= & 1 / 4+1 / 4[\cos (2 \pi / 3)-j \sin (2 \pi / 3)+1 / 4[\cos (4 \pi / 3)- \\
& j \sin (4 \pi / 3) \\
= & 1 / 4+1 / 4[-0.5-j 0.866]+1 / 4[-0.5+j 0.866] \\
= & 0.25-0.25=0
\end{aligned}
$$

DFT Example

- Continued from Example 1:

$$
\begin{aligned}
X(2)= & 1 / 4+1 / 4 e^{-j 4 \pi / 3}+1 / 4 \mathrm{e}^{-\mathrm{j} 8 \pi / 3} \\
= & 1 / 4+1 / 4[\cos (4 \pi / 3)-\mathrm{j} \sin (4 \pi / 3)]+ \\
& 1 / 4[\cos (8 \pi / 3)-\mathrm{j} \sin (8 \pi / 3)] \\
= & 0.25+0.25[-0.5+\mathrm{j} 0.866]+0.25[-0.5- \\
& j 0.866] \\
= & 0
\end{aligned}
$$

Thus,
$X(k)=\{0.75,0,0\}$

DFT Example

- Examples 2:

Given the following the finite length sequences, $x(\mathrm{n})=\{1,1,2,2,3,3\}$
Perform frequency analysis of the signal using DFT technique for the sequences.

Solution:

1. Determine the sequence length, $\mathrm{N}=6$.
2. Use DFT formula to determine $X(k)$.

$$
\begin{aligned}
& X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n k / N}, k=0,1,2,3,4,5 \\
& X(0)=12, X(1)=-1.5+j 2.598 \\
& X(2)=-1.5+j 0.866, X(3)=0 \\
& X(4)=-1.5-j 0.866, X(5)=-1.5-j 2.598
\end{aligned}
$$

Thus, the DFT sequences are;

$$
X(k)=\{12,-1.5+j 2.598,-1.5+j 0.866,0,-1.5-j 0.866,-1.5-j 2.598\}
$$

Convolution in DFT

To perform convolution for DFT, need to do the following:

1. Find N-point DFT of the sequence $h(n)$ and $x(\mathrm{n})$.
2. Multiply DFT to form $Y(k)=H(k) X(k)$
3. Perform inverse DFT to obtain $\mathrm{y}(\mathrm{n})$.

Convolution in DFT : Example

- Examples 3:

Find the DFT for the convolution of 2 sequences of the DTS signals as describe below: $x_{1}(\mathrm{n})=\{2,1,2,1\}, \quad x_{2}(\mathrm{n})=\{1,2,3,4\}$

Solution:

1. Determine the sequence length for each sequence. Here, the length of both sequences, $N=4$. Thus, the counter for DFT sequence, $k=0,1,2,3$.
2. Next, perform DFT for each sequence.

$$
\begin{aligned}
\text { (i) } X_{1}(0) & =\sum_{n=0}^{3} x(n) e^{-\mathrm{j} 2 \pi n k / 3}=6, \text { repeat for } X_{1}(1)=0, X_{1}(2)=2, X_{2}(3)=0 \\
X_{1}(k) & =\{6,0,2,0\} \\
\text { (ii) } X_{2}(0) & =\sum_{n=0}^{3} x(n) e^{-\mathrm{j} 2 \pi n k / 3} 10, \text { repeat for } X_{2}(1)=-2+\mathrm{j} 2, X_{2}(2)=-2, X_{2}(3)=-2-\mathrm{j} 2 \\
X_{2}(k) & =\{10,-2+\mathrm{j} 2,-2,-2-j 2\}
\end{aligned}
$$

3. Perform Convolution either using graphical or mathematical method, to obtain: $X_{3}(k)=X_{1}(k) X_{2}(k)=\{60,0,-4,0\}$

DISCRETE FOURIER TRANSFORM

To analyze the discrete-time signal response and characteristic in frequency domain by using DFT method

To obtain the properties of the DFT \& perform convolution

To convert the discrete-time signals into frequency domain using DFT

Conclusion of The Chapter

- Able to obtain the response of the discrete-time signal using DFT technique.
- Able to perform frequency analysis of the discrete-time signal using DFT technique.
- Able to perform discrete-signal convolution using DFT technique.

Teaching slides prepared by Dr. Norizam Sulaiman, Senior Lecturer, Applied Electronics and Computer Engineering, Faculty of Electrical \& Electronics Engineering, Universiti Malaysia Pahang, Pekan Campus, Pekan, Pahang, Malaysia norizam@umo.edu.mv

