PAHANG

DIGITAL SIGNAL PROCESSING

Chapter 3 z-Transform

by
Dr. Norizam Sulaiman
Faculty of Electrical \& Electronics Engineering norizam@ump.edu.my

OER Digital Signal Processing by Dr. Norizam Sulaiman work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives

Introduction to z-Transform

- Aims
- To analyze discrete-time signal in the frequency domain using ztransform technique and to perform convolution in frequency domain.
- Expected Outcomes
- At the end of this course, able to understand how to convert signal from time-domain to frequency domain and perform signal convolution in frequency domain using z-transform technique.

z-Transform: definition

- It is hard to analyze any sampled signal or data in the trequency doman using s-plane (Laplace's Transform). Analysis in z-plane is much preferred.
- The resulting transformation from s-domain to zdomain is called z-transform.
- The z-transform maps any point $s=\sigma+j \omega$ in the $s-$ plane to z-plane ($r \angle \theta$).
- The relation between s-plane and z-plane and viceversa is described below:

$$
z=e^{s T}, s=(1 / T) \ln z
$$

Where T is the sampling period $\left(T=1 / F_{s}\right)$.

z-Transform: definition

- The z-transform of a sequence $x[\mathrm{n}]$ is defined as below :

$$
Z\{x[n]\}=\underset{n=-\infty}{\infty}(z)=\Sigma x[n] z^{-n}
$$

- From the equation above, it can be seen that z^{-n} correspond to a delay of nT seconds or n sampling period.

- The z-transform can be converted to Fourier Transform (Frequency Domain) by replacing z with $\mathrm{e}^{\mathrm{j} \omega}$ as shown below :

$$
\mathrm{X}\left(\mathrm{e}^{\infty}{ }^{\mathrm{j} \omega}\right)=\underset{\mathrm{n}=-\infty}{\sum x[\mathrm{n}] \mathrm{e}^{-\mathrm{j} \omega n}}
$$

z-Transform: definition

- z-transform is used to characterize the LTI system in term of its response to input signal by pole-zero locations.
- z-transform is also used to analyze the characteristic of LTI system in frequency domain while s-transform is used to analyze time-domain signal.

Z-Transform: Region of Convergence (ROC)

\square A discrete-time signal is uniquely determined by its ztransform $\mathrm{X}(\mathrm{z})$ and the region of the convergence (ROC) of $X(z)$.
\square The ROC of the causal signal is exterior of an unit circle in z-plane. Meanwhile, the ROC of the anticausal signal is interior of an unit circle in z-plane.

Z-Transform: ROC Properties

- The properties of ROC are :

1. A finite length sequence has a z-transform with a region of convergence that includes entire z-plane except at $z=0$ or $z=\infty$.
2. A right sided sequence has a z-transform with a ROC is exterior of the circle:
ROC: $|z|>a$
3. A left sided sequence has a z-transform with ROC is the interior of a circle.
ROC: $|z|<\beta$

z-Transform: Table of common z-transform pairs

No	Signal, x(n)	Z-Transform	ROC
1	$\delta(\mathrm{n})$	1	All z
2	$u(n)$	$1 /\left(1-z^{-1}\right)$	$\|z\|>1$
3	$\mathrm{a}^{\mathrm{n}} \mathrm{u}(\mathrm{n})$	$1 /\left(1-a z^{-1}\right)$	$\|z\|>\|a\|$
4	$n a^{n} u(n)$	$a z^{-1} /\left(1-a z^{-1}\right)^{2}$	$\|z\|>\|a\|$
5	$-\mathrm{a}^{n} u(-n-1)$	$1 /\left(1-a z^{-1}\right)$	$\|z\|<\|a\|$
6	$-n a^{n} u(-n-1)$	$a z^{-1} /\left(1-a z^{-1}\right)^{2}$	$\|z\|<\|a\|$
7	$\left(\cos \omega_{0} \mathrm{n}\right) \mathrm{u}(\mathrm{n})$	$\begin{aligned} & \left(1-z^{-1} \cos \omega_{0}\right) /\left(1-2 z^{-1} \cos \omega_{0}+\right. \\ & \left.z^{-2}\right) \end{aligned}$	$\|z\|>\|1\|$
8	$\left(\sin \omega_{0} \mathrm{n}\right) \mathrm{u}(\mathrm{n})$	$\left(z^{-1} \sin \omega_{0}\right) /\left(1-2 z^{-1} \cos \omega_{0}+z^{-2}\right)$	$\|z\|>\|1\|$
9	$a^{n}\left(\cos \omega_{0} n\right) u(n)$	$\begin{aligned} & \left(1-a z^{-1} \cos \omega_{0}\right) /\left(1-2 a z^{-1} \cos \omega_{0}\right. \\ & \left.+a^{2} z^{-2}\right) \end{aligned}$	$\|z\|>\|a\|$
10	$a^{n}\left(\sin \omega_{0} n\right) u(n)$	$\begin{aligned} & \left(a z^{-1} \sin \omega_{0}\right) /\left(1-2 a z^{-1} \cos \omega_{0}+\right. \\ & \left.a^{2} z^{-2}\right) \end{aligned}$	$\|z\|>\|a\|$

z-Transform: Table of z-transform properties

No.	Properties	Time-Domain	Z-Domain	ROC
1	Notation	$x(\mathrm{n})$	$X(z)$	$r_{2}<\|z\|<r_{1}$
2	Linearity	$\begin{gathered} \mathrm{a}_{1} x_{1}(\mathrm{n})+ \\ \mathrm{a}_{2} x_{2}(\mathrm{n}) \end{gathered}$	$\mathrm{a}_{1} X_{1}(\mathrm{z})+\mathrm{a}_{2} X_{2}(\mathrm{z})$	At least the intersection of ROC_{1} and ROC_{2}
3	Time shifting	$x(\mathrm{n}-\mathrm{k})$	$Z^{-k} X(z)$	That of $X(z)$ except $z=0$ if $\mathrm{k}>0$ and $\mathrm{z}=\propto$ if $\mathrm{k}<0$
4	Scaling in z-domain	$\mathrm{a}^{\mathrm{n}} x(\mathrm{n})$	$X\left(a^{-1} z\right)$	lalr ${ }_{2}<\|z\|<\operatorname{lalr}_{1}$
5	Time Reversal	$x(-\mathrm{n})$	$X\left(z^{-1}\right)$	$1 / r_{1}<\|z\|<1 / r_{2}$
6	Conjugate	$x^{*}(\mathrm{n})$	$\mathrm{X}^{*}\left(Z^{*}\right)$	ROC
7	Real	$\operatorname{Re}\{x(\mathrm{n})\}$	$1 / 2\left[X(z)+X^{*}\left(z^{*}\right)\right]$	Include ROC
8	Imaginary	$\operatorname{Im}\{x(\mathrm{n})\}$	$1 / 2\left[X(z)-X^{*}\left(z^{*}\right)\right]$	Include ROC
9	Differentiation in ztransform	$\mathrm{n} x(\mathrm{n})$	$-z d X(z) / d z$	$r_{2}<\|z\|<r_{1}$
10	Convolution	$x_{1}(\mathrm{n}) * x_{2}(\mathrm{n})$	$X_{1}(\mathrm{z}) \mathrm{X}_{2}(\mathrm{z})$	At the least the intersection of ROC_{1} and ROC_{2}

z-Transform-Examples

- Examples of z-transform using z-transform formula; Given the finite length sequence of discrete-time signal as below;

$$
x[n]=\{1,2,5,7,0,1\}
$$

Determine the z-transform of the sequence and its ROC. Solution :

$$
\begin{aligned}
& Z\{x[n]\}=X(z)=\sum_{n=0}^{\infty}\{1,2,5,7,0,1\} z^{-n} \\
& =1 \cdot z^{-0}+2 \cdot z^{-1}+5 \cdot z^{-2}+7 \cdot z^{-3}+0 \cdot z^{-4}+ \\
& 1 . z^{-5} \\
& =1+2 z^{-1}+5 z^{-2}+7 z^{-3}+0+z^{-5}
\end{aligned}
$$

The ROC is the entire z-plane except $z=0$.

z-Transform-Examples

- Examples of z-transform using table of common ztransform pairs;
Given the discrete-time signal as below; $\mathrm{x}(\mathrm{n})=0.8^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
Determine the z-transform of the sequence and its ROC.

Solution :

First, inspect the table and find the matching equation in term of z-transforrm.
The equation match with equation no. 3 in the table where
a $=0.8$, thus,
$X(z)=1 /\left(1-a z^{-1}\right)=1 /\left(1-0.8 z^{-1}\right)$
The ROC is at $\mathrm{IzI}>0.8$

Inverse z-Transform

- The inverse of z-transform of the discrete time signal is required in the signal processing in order to convert the analysis of the discrete-time signal in the zdomain to the time domain for signal re-construction.
- The inverse z-transform generate the discrete sequence, $x[n]$ from its z transform, $\mathrm{X}(\mathrm{z})$. It can be defined as below :

$$
x[n]=Z^{-1}\{X(z)\}
$$

- The z-transform, $X(z)$ is often expressed in the ratio of 2 polynomials in z^{-1} or z (Numerator over Denominator) as shown below, where M is the highest order of numerator and N is the highest order of denominator:
- $X(z)=N(z) / D(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{k}$

$$
\begin{aligned}
& \sum_{k=0}^{N} a_{k} z^{-k} \\
= & \frac{b_{0}+b_{1} z^{-1}+\ldots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\ldots+a_{N} z^{-N}}
\end{aligned}
$$

Inverse z-Transform

- The $X(z)$ also can be expressed in a factor form in term of poles and zeros as shown below :

$$
X(z)=b_{0} z^{-M+N} \frac{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right) \ldots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right) \ldots\left(z-p_{N}\right)}
$$

- In the z-plane, the zeros are denoted by " o " and the poles are denoted by " x " as shown in the diagram for the following equation of $X(z)$;

$$
X(z)=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}
$$

Inverse z-Transform

- There are 3 methods to obtain the inverse z-transform;

1. Inspection Method
2. Power Series Expansion Method
3. Partial Fraction Expansion Method
4. Residue Method

Inverse z-Transform - Example

- 1. Inspection method

Inspect the given z-transform, $\mathrm{X}(\mathrm{z})$ and by using the table of common z-transform pairs to determine the inverse of $X(z)$. Given the z-transform, $X(z)=\left(1 / 1-0.5 z^{-1}\right)$, find the inverse z transform of $X(z)$.

Solution :

First, inspect the table of common z-transform pairs to find the matching one.
Second, the z-transform is match to $X(z)=1 / 1-\alpha z^{-1}$. In this case, $\alpha=0.5$.
Third, write the given z-transform in time domain, which is $X(z)=>(0.5)^{n} u[n]$.

Inverse z-Transform - Example

- 2. Power Series Expansion method

Expand the given z-transform $X(z)$ into a power series of the form by a long division.

Example :

$$
X(z)=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}
$$

- After long division, the z-transform,

$$
X(z)=2 z^{-2}+6 z^{3}+14 z^{4}+30 z^{5}+62 z^{6}+\ldots
$$

Thus,
$x[n]=Z^{-1}\{X(z)\}=\{\ldots, 62,30,14,6,2,0,0\}$

Inverse z-Transform - Example

- 3. Partial Fraction Inspection method

In this method, the z-transform is first, expanded into partial fractions. Then, determine the inverse z-transform of each partial fraction from z-transform table and sum them up. If the order of the Numerator less than Denominator ($\mathrm{M}<\mathrm{N}$), there is no B_{o} in front of the partial fraction. If the order of the Numerator = the order of Denominator ($\mathrm{M} \geq \mathrm{N}$), the B_{0} in front of the partial fraction will be $B_{o}=b_{M} / a_{N}$. The rule of order :
\Rightarrow If $\mathrm{M}<\mathrm{N}$, ${ }_{N}$

$$
X(z) / z=\sum_{k=1} \frac{A_{k} z}{z-p_{k}}=\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\ldots+\frac{A_{N}}{z-p_{N}}
$$

\Rightarrow If $M=N$,

$$
x(z) / z=B_{o}+\sum_{k=1}^{N} \frac{A_{k} z}{z-p_{k}}=B_{o}+\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\ldots+\frac{A_{N}}{z-p_{N}}
$$

=> if $\mathrm{M}>\mathrm{N}$, then the Numerator must first divided by Denominator through long division to make $M \leq N$.

Inverse z-Transform - Example

- 3. Partial Fraction Inspection method

Find the discrete-time signal, $x[\mathrm{n}]$ represented by the following z-transform by using Partial Expansion Method:

$$
X(z)=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}
$$

Solution:

1. Express the $X(z)$ in power of z by multiplying the equation by the highest power of $z, n a m e l y, z^{2}$.
2. The $X(z)$ now become:

$$
X(z)=\frac{z^{2}}{z^{2}-1.5 z+0.5}
$$

3. Factor out the denominator by using this formula:

$$
P_{1}, P_{2}=\frac{\sqrt{-b \pm b^{2}-4 a c}}{2 a}
$$

4. Thus, by using the formula above,

$$
P_{1}, P_{2}=\frac{-(-1.5) \pm \sqrt{(-1.5)^{2}-4(1)(0.5)}}{2(1)}=\frac{1.5 \pm 0.5=1,0.5}{2}
$$

5. Express $X(z)$ as below :
$X(z)=$
$\frac{z}{(z-1)(z-0.5)}$

Inverse z-Transform - Example

- 3. Partial Fraction Inspection method

Solution:

6. By using PFE, $X(z) / z$ become:

$$
\underset{z}{X(z)}=\frac{A_{1}}{(z-1)+(z-0.5)}
$$

7. Calculate A_{1} and A_{2} as below :

$$
\begin{aligned}
A_{1}=\frac{X(z)(z-1)}{z} & =\frac{z}{(z-1)(z-0.5)}(z-1) \\
& =\frac{z}{(z-0.5)_{z=1}}=\frac{1}{(1-0.5)}=2
\end{aligned}
$$

$$
\begin{aligned}
A_{2}=x(z)(z-0.5) & =\frac{z}{(z-1)(z-0.5)} \\
& =\frac{z}{(z-1)_{z=0.5}}=\frac{0.5}{(0.5-1)}=-1
\end{aligned}
$$

8. $X(z)=\frac{2 z-}{(z-1)} \frac{z}{(z-0.5)}$
9. From the table of z-transform, $x[n]=\left[2-(0.5)^{n}\right] u[n], n>0$.

Inverse z-Transform - Example

- 4. Residue method

In this method, the inverse z-transform is obtained by evaluating the contour integral :

$$
x[n]=\frac{1}{2 \pi j} \oint z^{n-1} X(z) d z
$$

$=$ sum of the residue of $z^{n-1} \mathrm{X}(\mathrm{z})$ at all poles inside contour C.
The residue of $z^{n-1} X(z)$ at pole p_{k} is given by:

$$
\operatorname{Res}\left[F(z), p_{k}\right]=\frac{1}{(N-1)!} \frac{d^{N-1}}{d z^{N-1}}\left[\left(z-p_{k}\right) F(z)\right]_{z=p k}
$$

Inverse z-Transform - Example

- 4. Residue method

Find the discrete-time sequence, $x[n]$ of the following z-transform by using Residue Method,

$$
X(z)=\frac{z^{-1}}{1-1.5 z^{-1}-0.5 z^{-2}}
$$

Solution :

1. The $X(z)$ can be expressed in the
form of:

$$
X(z)=\frac{z^{2}}{(z-1)(z-0.5)}
$$

2. By using Residue Method, let the function $F(z)=z^{n-1} X(z)$
3. $F(z)$ now become:

$$
F(Z)=z^{n-1} \frac{z^{2}}{(z-1)(z-0.5)}=\frac{z^{n+1}}{(z-1)(z-0.5)}=\frac{z^{n} z}{(z-1)(z-0.5)}
$$

4. let $n=0$, then $F(z)$ become :

$$
F(Z)=\frac{z}{(z-1)(z-0.5)}
$$

Inverse z-Transform - Example

- 4. Residue method

Find the discrete-time sequence, $x[n]$ of the following z-transform by using Residue Method,

$$
X(z)=\frac{z^{-1}}{1-1.5 z^{-1}-0.5 z^{-2}}
$$

Solution:
5. Now, calculate the residue :

$$
\text { a. } \operatorname{Res}[F(z), 1]=(z-1) F(z)=\frac{(z-1) \quad z}{(z-1)(z-0.5)_{z=1}}=\frac{1}{1-0.5}=2(1)^{n}
$$

$$
\text { b. } \operatorname{Res}[F(z), 0.5)]=(z-0.5) F(z)=\frac{(z-0.5)}{(z-1)(z-0.5)_{z=0.5}} \frac{0.5}{(0.5-1)}=-1(0.5)^{n}
$$

6. Thus the inverse z-transform;

$$
x[n]=\left[2(1)^{\mathrm{n}}-(0.5)^{\mathrm{n}}\right] \mathrm{u}[\mathrm{n}], \mathrm{n}>0
$$

System Stability \& Causality

\square Causal:

\rightarrow ROC of the LTI system is exterior of a circle.
Don-Causal:
\rightarrow ROC of the LTI system in interior of a circle.
\square Stable:
\rightarrow The poles of the transfer function $\mathrm{H}(\mathrm{z})$ inside the unit circle. ROC must include unit circle.
\square Unstable:
\rightarrow The poles of the transfer function $\mathrm{H}(\mathrm{z})$ outside the unit circle. ROC does not include unit circle.

System Stability \& Causality

The LTI system is described by its transfer function below;

$$
H(z)=\left(3-4 z^{-1}\right) /\left(1-3.5 z^{-1}+1.5 z^{-2}\right)
$$

First, locate the poles of the system;

$$
H(z)=\left(3-4 z^{-1}\right) /\left(1-0.5 z^{-1}\right)\left(1-3 z^{-1}\right)
$$

The poles at $z=0.5$ and 3 .
Second, the determine the system stability based on the location of z in the unit circle.
Based on the location of the poles in unit circle, the system is unstable since one of the pole located outside unit circle. The system is non-causal if ROC is $0.5<|z|<3$ interior and, causal if ROC is at $|z|>3$, exterior.

To perform signal analysis in z-transform domain and to convert the signal for signal re-construction
To improve $\quad 4$ sampling \& convolution process based on signal characteristics

To calculate z-transform 3 and inverse z-transform Transfer function and convolution in using ztransform

Conclusion of The Chapter

- Able to understand and apply the z-transform technique to perform signal analysis in frequency domain.
- Able to apply inverse z-transform technique for signal reconstruction.
- Able to calculate system stability and causality
- Able to obtain zero-pole location of the system from its zplane or unit circle.

PAHANG

leaching slides prepared by

 Dr. Norizam Sulaiman, Senior Lecturer, Applied Electronics and Computer Engineering,Faculty of Electrical \& Electronics
Engineering, Universiti Malaysia Pahang, Pekan Campus, Pekan, Pahang, Malaysia

