

SCIENCE AND ENGINEERING MATERIALS

Interatomic Bonding

by Mohd Shaiful Zaidi Bin Mat Desa Faculty of Chemical & Natural Resources Engineering shaiful@ump.edu.my

Chapter Description

- Learning Objectives
 - Describe ionic, covalent, metallic, Van Der Waals and mixed bonds and note the differences between them
 - Explain the relation between atomic bonding and material properties
 - Note what materials exhibit each of the bonding types

Atomic Bonding: Ionic Bonding

- Result of electron transfer from one atom to another
- Formed between highly electropositive (metallic) elements and highly electronegative (nonmetallic) elements
- Due to coulombic attraction
- Producing cations and anions
- Nondirectional: +ve species attract –ve species in all direction → ions stacked together in a solid

Ionic Bonding

Source: BruceBlaus; Wikimedia

Poor Electrical conductivity; the electrical charge is transferred by the movement of entire ion. Because of their size do not move as easy as electrons

Brittle; During mechanical force → electrostatic repulsion between molecules, leads to disruption of lattice structure

Covalent Bonding

- Cooperative sharing of valence electrons between two adjacent atoms (atoms with small differences in electronegativity and close to each other in periodic table)
- Highly directional
- Poor electrical and thermal conductivity
- For electron to move and carry current covalent bond must be broken (required high temperature or voltage)

Covalent Bonding

- Electron from hydrogen
- Electron from carbon

Source: DynaBlast; Wikimedia

Metallic Bonding

- Occurs in solid metals
- Involves e⁻ sharing: Valence e⁻ attracted to the nuclei of neighboring atoms (delocalized e⁻) → electron cloud
- Non-directional: atoms are packed together in a systematic pattern or crystalline structure
- Example: Al give 3 electrons to form a sea of electron

Metallic Bonding

Source: Muskid; Wikimedia

 Graphical depiction of metallic bonding. Note the metal *ion cores* is surrounded by *sea* of free electrons

Atomic Bonding: Secondary bonding

- Involves weak attraction between atoms
- Electron transfer/sharing does not take place
- Arises from interaction between dipoles
 - Fluctuating dipoles
 - Permanent dipoles (molecule induced)
- Examples:
 - Van der Waal's bonding
 - Hydrogen bonding

Atomic Bonding: Secondary bonding

Source: OpenStax College; Wikimedia

- Hydrogen bonding between water molecules
 - Heating water may break the hydrogen bonding between molecule (secondary bond), but much higher energy is needed to break covalent bonding (primary bond) joining hydrogen and oxygen.

Atomic Bonding: Mixed bonding

- Ionic-covalent semiconducting compounds such as GaAs, ZnSe
- Metallic-covalent occurs in transition metals
 (Ti, Fe) → high T_{melt}
- Metallic-ionic occurs in intermetallic compounds (NaZn₁₃, Al₉Co₃, Fe₅Zn₂₁)

Conclusion of The Chapter

- There are three types of atomic bonding
 - Primary bonding
 - Secondary bonding
 - Mixed bonding
- Three types of primary bonding
 - Ionic bonding
 - Covalent bonding
 - Metallic
- Two types of secondary bonding
 - Fluctuating dipoles
 - Permanent dipoles

References

[1] Callister, Jr. W. D. Fundamentals of Materials Science & Engineering, Wiley, Third Edition.

[2] Shackelford, J. F. Introduction to Materials Science for Engineers, Pearson, Prentice Hall, 1231276190

[3] Smith, W. F. & Hashemi, J. Foundations of Materials Science & Engineering, McGraw Hill, 0071256903

[4] Askeland, D. R. The Science and Engineering of Materials, Chapman & Hall, 412539101

Author Information

Kamal Yusoh, Mohammad Dalour Hossen Beg, Mohd Shaiful Zaidi Mat Desa, Nasratun Masngut, Suriati Ghazali

