

Faculty of Electrical & Electronics Engineering Antenna & Propagation

Name:	ID:
Section:	Date:
	Tutorial
1. Figure 1 below shows a	n equivalent circuit of transmission line. A lossless $Z_{o=}$
100 Ω transmission lin	he L= 0.3 λ in length is terminated in an unknown
impedance Z_{L} . The input	impedance is measured to be $Z_{in} = 40 - j20 \Omega$.
Zin +	L Zo Zo Zo
toward generator	toward Load

Figure 1: Transmission line equivalent circuit

- (i) Use Smith Chart in appendix to find Z_L
- (ii) Use the Smith Chart to find SWR
- (iii) The reflection coefficient and angle of, τ_L
- (iv) The distance from the load to the first voltage minimum.
- (v) The distance from the load to the first voltage maximum.

- 2. A load impedance of 40 j30 Ω terminates a 50 Ω transmission line of 7 cm long carrying 3 GHz signal. Find
 - The SWR on the line. (i)
 - (ii) The reflection coefficient and angle of, τ_{L} .
 - The distance from the load (cm) to the first voltage minimum. (iii)
 - (iv) The distance from the load (cm) to the first voltage maximum.
 - The input impedance. (v)
- 3. The 0.1 λ length transmission line has a characteristic impedance of 50 Ω and is terminated with a load of $Z_L = 5 + j25\Omega$.
 - (vi) Plot the Z_L in the Smith Chart.
 - Find the input impedance. (vii)
 - (viii) What is the SWR on the line?
 - (ix) The reflection coefficient and its angle at the load
 - (x) The reflection coefficient and its angle at the generator.
 - The distance from the load (in λ) to the first voltage minimum and (xi) maximum.

