

FACULTY OF ELECTRICAL & ELECTRONICS ENGINEERING

FINAL EXAMINATION

COURSE	:	CIRCUIT ANALYSIS I
COURSE CODE	:	BEE1133
LECTURER	:	NOR RUL HASMA BINTI ABDULLAH
		MAHFUZAH BINTI MUSTAFA
		MARLINA BINTI YAKNO
		NORMANIHA BINTI ABD GHANI
DATE	:	
DURATION	:	3 HOURS
SESSION/SEMESTER	:	SESSION 2015/2016 SEMESTER I
PROGRAM	:	BEE/BEC/BEP

INSTRUCTIONS TO CANDIDATES

- 1. This question paper consists of FIVE (5) questions. Answer ALL the questions.
- 2. All answers to a new question should start on new page.
- 3. All the calculations and assumptions must be clearly stated.
- 4. Candidates are not allowed to bring any material other than those allowed by the invigilator into the examination room.

EXAMINATION REQUIREMENTS

1. Appendix 1 : Table of Formulas

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

QUESTION 1

a) Discuss a basic concept of Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL).

[4 Marks] [CO1, PO1, C2]

- b) For the circuit in Figure 1, use the simplification techniques to determine:
 - i) Current, **I**
 - ii) Voltage, V
 - iii) Power delivered by the 72 V source

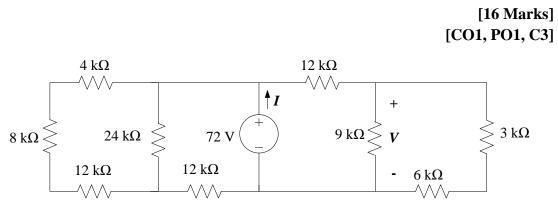


Figure 1

CONFIDENTIAL

QUESTION 2

For the circuit in Figure 2, use mesh analysis to determine:

- (a) Current, I_1 to I_4 .
- (b) Voltage at point *b*

[20 Marks] [CO2, PO1, C3]

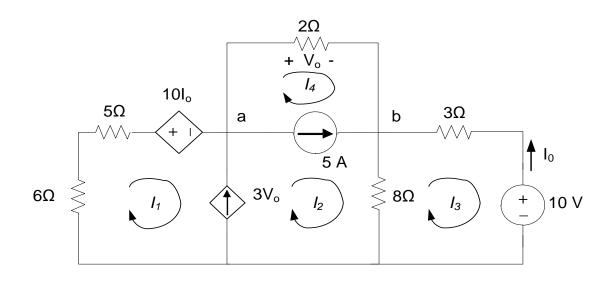


Figure 2

[10 Marks]

CONFIDENTIAL

QUESTION 3

a) For the circuit shown in Figure 3, determine the current, *i* by using superposition theorem.

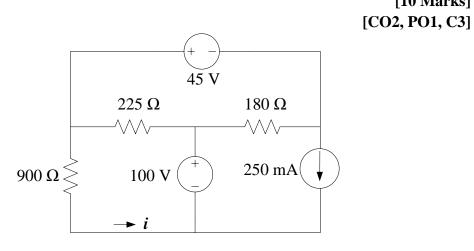


Figure 3

b) Use a sequence of source transformation to find *i* as shown in Figure 4.

[5 Marks] [CO2, PO1, C3]

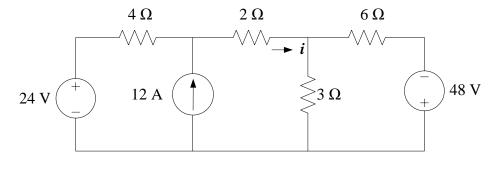


Figure 4

QUESTION 4

- By using Norton theorem for the circuit shown in Figure 5:
- (a) Find the Norton equivalent resistance, R_N at terminal a-b.
- (b) Find the Norton current, I_N flow through terminal a-b.
- (c) Draw the Norton equivalent circuit.
- (d) From 4(c), draw the Thevenin equivalent circuit and find the voltage across $R_L=2 \Omega$.
- (e) Calculate the maximum power, P_{max} transferred to the load.

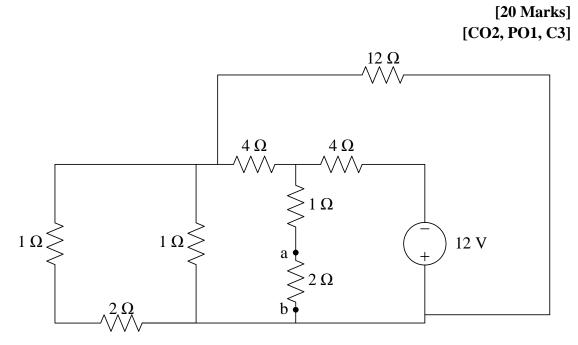


Figure 5

CONFIDENTIAL

[16 Marks] [CO3, PO1, C3]

QUESTION 5

- a) The switch 1 in Figure 6 has been in position *a* for a long time. At *t* = 0, the switch moves instantaneously to position *b*. At the instant the switch makes contact with terminal *b*, switch 2 opens. Determine:
 - (i) The capacitor voltage $V_0(t)$ for t > 0
 - (ii) The capacitor voltage at t = 5 ms and t = 10 ms.

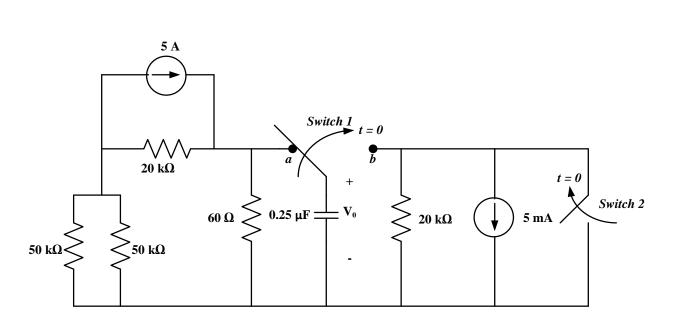


Figure 6

CONFIDENTIAL

b) The switch in Figure 7 has been open for long time before closing at t = 0. Find the inductor voltage $V_0(t)$ for t > 0.

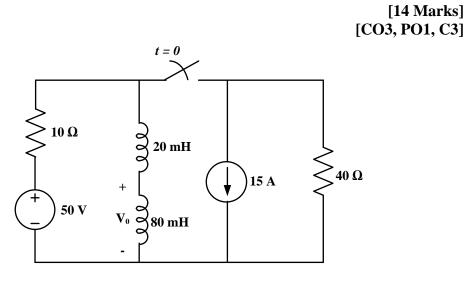


Figure 7

END OF QUESTION PAPER

APPENDIX - Table of Formulas

1.
$$P_{\text{max}} = \frac{V_{th}^2}{4R_{th}}$$

2. The unit step function

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

3. $V_{C} = \frac{1}{C} \int_{t_{0}}^{t} i dt + v(t_{0});$
4. $i_{C} = C \frac{dv}{dt};$
5. $\tau = RC;$
6. $v(t) = V_{0}e^{-t/\tau};$
7. $v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}$
8. $i(t) = i(\infty) + [i(0) - i(\infty)]e^{-t/\tau}$
9. $R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}, R_{2} = \frac{R_{a}R_{c}}{R_{a} + R_{b} + R_{c}}, R_{3} = \frac{R_{b}R_{a}}{R_{a} + R_{b} + R_{c}}$
10. $R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}, R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}, R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$

8