

FACULTY OF ELECTRICAL & ELECTRONICS ENGINEERING FINAL EXAMINATION

COURSE	:	CIRCUIT ANALYSIS I/
		ELECTRIC CIRCUITS I
COURSE CODE	:	BEE1133/ BEE1113
LECTURER	:	DR. NOR RUL HASMA BINTI ABDULLAH
DATE	:	
DURATION	:	3 HOURS
SESSION/SEMESTER	:	SESSION 2012/2013 SEMESTER 2
PROGRAMME CODE	:	BEE/BEP/BEC

INSTRUCTIONS TO CANDIDATES

- 1. This question paper consists of **FIVE (5)** questions. Answer **ALL** the questions.
- 2. All answers to a new question should start on new page.
- 3. All the calculations and assumptions must be clearly stated.

EXAMINATION REQUIREMENTS

Appendix 1: Table of Formula

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

This examination paper consists of **NINE (9)** printed pages including front page

QUESTION 1

- a) Figure 1 shows an example of an electric circuit. Determine;
 - (i) Kirchoff's Voltage Law (KVL) equation for each loop.
 - (ii) The voltage, V₂.
 - (iii)The voltage, V_3 if voltage, V_4 is given as 3.3 V.

[8 Marks] [CO1, PO1, C3]

2

- b) By applying $\Delta \leftrightarrow Y$ transformation technique to the circuit in Figure 2, determine;
 - (i) The equivalent resistance, R_{eq.}
 - (ii) The value of current, I_o.
 - (iii)The value of voltage, V_o.
 - (iv)The power dissipated by 4- Ω resistor at V_o.
 - (v) The power delivered by independent voltage source.

[12 Marks] [CO1, PO1, C4]

QUESTION 2

Perform Mesh analysis to the circuit in Figure 3, then

- a) Determine all the value of unknown mesh currents, I_1 , I_2 and I_3 .
- b) Calculate the power delivered by dependent current source.

[15 Marks] [CO2, PO1, C4]

Figure 3

QUESTION 3

A modified bridge circuit is shown in Figure 4. By using Thevenin theorem;

- a) Find the Thevenin equivalent resistance, R_{th} at terminal a-b.
- b) Find the Thevenin voltage, V_{th} across terminal a-b
- c) Draw the Thevenin equivalent circuit
- d) From 3(c), draw the Norton equivalent circuit and find the current through $R_L=1\Omega$.
- e) Calculate the maximum power, P_{max} transferred to the load.

[20 Marks] [CO2, PO1, C4]

Figure 4

QUESTION 4

The switch, s in Figure 5 was at position 'a' for a long time. At t = 0, the switch is move to position 'b'. Find the expression for v(t) for $t \ge 0$.

[15 Marks] [CO2, PO1, C4]

QUESTION 5

- a) For the circuit shown in Figure 6;
 - (i) Obtain the equivalent circuit in frequency domain.
 - (ii) Determine the impedance, Z_x as seen looking into terminals a-b.
 - (iii) Find the voltage, v_x .
 - (iv) Calculate the voltage, v_0 .

[10 Marks] [CO3, PO1, C4]

b) Use Nodal analysis to determine the voltage, V_x and V_z for the circuit shown in Figure 7.

[20 Marks] [CO3, PO1, C5]

Figure 7

END OF QUESTION PAPER

APPENDIX I – Table of Formula

(1) $Y-\Delta$ Transformation	(2) Δ -Y Transformation
$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$	$R_1 = rac{R_b R_c}{R_a + R_b + R_c}$
$R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$	$R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$
$R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$	$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$
(3)	(4)
$V_c = \frac{1}{C} \int_{t_0}^t i dt + v(t_o)$	$i_c = C \frac{dv}{dt};$
$i_L = \frac{1}{L} \int_{t_0}^t v dt + i(t_o)$	$V_L = L \frac{di}{dt}$
(5)	(6)
$v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}$	$i(t) = i(\infty) + [i(0) - i(\infty)]e^{-t/\tau}$