FACULTY OF ELECTRICAL \& ELECTRONICS ENGINEERING

 FINAL EXAMINATION| COURSE | $:$ | CIRCUIT ANALYSIS I/
 ELECTRIC CIRCUITS I |
| :--- | :--- | :--- |
| COURSE CODE | $:$ | BEE1133/BEE1113 |
| LECTURERS | $:$ | ROSYATI BINTI HAMID |
| | $:$ | NOR RUL HASMA BINTI ABDULLAH |
| | $:$ | MOHD RIDUWAN BIN GHAZALI |
| DATE | $:$ | 3 HANUARY 2013 |
| DURATION | $:$ | SESSION 2012/2013 SEMESTER I |
| SESSION/SEMESTER | $:$ | BEE/BEC/BEP |
| PROGRAMME CODE | | |

INSTRUCTIONS TO CANDIDATES

1. This question paper consists of FIVE (5) questions. Answer ALL the questions.
2. All answers to a new question should start on new page.
3. All the calculations and assumptions must be clearly stated.
4. Candidates are not allowed to bring any material other than those allowed by the invigilator into the examination room.

EXAMINATION REQUIREMENTS

1. Appendix 1 : Table of Formula

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO
This examination paper consists of SEVEN (7) printed pages including front page

QUESTION 1

a. Figure 1 shows an example of an electric circuit. By using circuit simplification method, find the value of v_{x} in the circuit.

Figure 1
[10 Marks]
[CO1, PO1, C4]
b. For the circuit shown in Figure 2, use the circuit simplification techniques to determine;
(i) the voltages, v_{1} and v_{2}, and
(ii) the power provided by independent source.

Figure 2
[10 Marks]
[C01, PO1, C4]

QUESTION 2

For the circuit shown in Figure 3, use Nodal Analysis to determine:
a. the voltages $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3},
b. the current, i_{x}

Figure 3
[15 Marks]
[CO2, PO1, C4]

QUESTION 3

Determine the voltage V_{o} in Figure 4 by using Norton's theorem. Find the maximum power that can be delivered to 5Ω resistor.

Figure 4
[20 Marks]
[CO2, PO1, C4]

QUESTION 4

The switch in Figure 5 has been in position x for a long time. At $t=0$, the switch moves instantaneously to position y.
a. Find α so that the time constant for $t>0$ is 40 ms .
b. For the α found in (a), find V_{Δ}.

Figure 5

QUESTION 5

a. Given

$$
\begin{equation*}
60 \cos \left(5 t+45^{\circ}\right)-6 \frac{d i}{d t}+3 \int i d t+6 i=0 \tag{1}
\end{equation*}
$$

i. Using phasor approach, determine the current $i(t)$ in circuit described by the equation (1).
ii. If current obtained in (i) is applied to a 0.5 H inductor, calculate the voltage across that inductor.
[5 Marks]
[CO3, PO2, C4]
b. The circuit in Figure 6 shows a combination of resistor and inductor elements. Calculate the voltages across resistors 5Ω and 60Ω using nodal analysis if $V_{1}=30 \cos \left(2 t+25^{\circ}\right) V$ and $V_{2}=20 \cos \left(2 t+130^{\circ}\right) V$.

Figure 6
[12 Marks]
[CO3, PO2, C4]
c. Determine the voltages of V_{A} and V_{B} in Figure 7.

Figure 7

APPENDIX I - Table of Formula

(1) Y- Δ Transformation	(2) Δ-Y Transformation
$R_{a}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}}$	$R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}$
$R_{b}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}}$	$R_{2}=\frac{R_{c} R_{a}}{R_{a}+R_{b}+R_{c}}$
$R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}$	$R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}$
(3)	$i_{c}=C \frac{d v}{d t} ;$
$V_{c}=\frac{1}{C} \int_{L_{0}}^{t} i d t+v\left(t_{o}\right)$	$V_{L}=L \frac{d i}{d t}$
$i_{L}=\frac{1}{L} \int_{t_{0}}^{t} v d t+i\left(t_{o}\right)$	(6)
(5)	$i(t)=i(\infty)+[i(0)-i(\infty)] e^{-1 / \tau}$
$v(t)=v(\infty)+[v(0)-v(\infty)] e^{-1 / \tau}$	

