

FACULTY OF ELECTRICAL & ELECTRONICS ENGINEERING

FINAL EXAMINATION

COURSE	:	CIRCUIT ANALYSIS I/ ELECTRIC CIRCUITS I
COURSE CODE	:	BEE1133/BEE1113
LECTURERS	: :	ROSYATI BINTI HAMID NOR RUL HASMA BINTI ABDULLAH MOHD RIDUWAN BIN GHAZALI
DATE	:	9 JANUARY 2013
DURATION	:	3 HOURS
SESSION/SEMESTER	•	SESSION 2012/2013 SEMESTER I
PROGRAMME CODE	:	BEE/BEC/BEP

INSTRUCTIONS TO CANDIDATES

- 1. This question paper consists of FIVE (5) questions. Answer ALL the questions.
- 2. All answers to a new question should start on new page.
- 3. All the calculations and assumptions must be clearly stated.
- 4. Candidates are not allowed to bring any material other than those allowed by the invigilator into the examination room.

EXAMINATION REQUIREMENTS

1. Appendix 1 : Table of Formula

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

This examination paper consists of SEVEN (7) printed pages including front page

QUESTION 1

a. Figure 1 shows an example of an electric circuit. By using circuit simplification method, find the value of v_x in the circuit.


```
[10 Marks]
[CO1, PO1, C4]
```

- b. For the circuit shown in Figure 2, use the circuit simplification techniques to determine;
 - (i) the voltages, v_1 and v_2 , and
 - (ii) the power provided by independent source.

Figure 2

[10 Marks] [CO1, PO1, C4]

BEE/BEC/BEP 1213I/BEE1133/BEE1113

CONFIDENTIAL

QUESTION 2

For the circuit shown in Figure 3, use Nodal Analysis to determine:

- a. the voltages V_1 , V_2 and V_3 ,
- b. the current, i_x

[15 Marks] [CO2, PO1, C4]

QUESTION 3

Determine the voltage V_0 in Figure 4 by using Norton's theorem. Find the maximum power that can be delivered to 5 Ω resistor.

Figure 4

[20 Marks] [CO2, PO1, C4]

QUESTION 4

The switch in Figure 5 has been in position x for a long time. At t = 0, the switch moves instantaneously to position y.

- a. Find α so that the time constant for t > 0 is 40 ms.
- b. For the α found in (a), find V_{Δ}.

Figure 5

[15 Marks] [CO2, PO1, C4]

QUESTION 5

a. Given

$$60\cos(5t+45^{\circ}) - 6\frac{di}{dt} + 3\int idt + 6i = 0$$
 (1)

- i. Using phasor approach, determine the current *i(t)* in circuit described by the equation (1).
- ii. If current obtained in (i) is applied to a 0.5 H inductor, calculate the voltage across that inductor.

[5 Marks] [CO3, PO2, C4]

b. The circuit in Figure 6 shows a combination of resistor and inductor elements. Calculate the voltages across resistors 5 Ω and 60 Ω using nodal analysis if $V_1 = 30\cos(2t + 25^\circ)V$ and $V_2 = 20\cos(2t + 130^\circ)V$.

Figure 6

[12 Marks] [CO3, PO2, C4]

c. Determine the voltages of V_A and V_B in Figure 7.

[13 Marks] [CO3, PO2, C5]

END OF QUESTION PAPER

(1) Y- Δ Transformation	(2) Δ -Y Transformation
$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$	$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$
$R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$ $R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$	$R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$
$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$	$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$
(3)	(4)
$V_c = \frac{1}{C} \int_{t_0}^{t} i dt + v(t_o)$ $i_L = \frac{1}{L} \int_{t_0}^{t} v dt + i(t_o)$	$i_{c} = C \frac{dv}{dt};$ $V_{L} = L \frac{di}{dt}$
$i_L = \frac{1}{L} \int_{t_0}^t v dt + i(t_o)$	$V_L = L \frac{di}{dt}$
(5)	(6)
$v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}$	$i(t) = i(\infty) + [i(0) - i(\infty)]e^{-t/t}$

APPENDIX I - Table of Formula

7