

# Faculty of Electrical & Electronics Engineering BEE1133 Circuit Analysis I

#### **LABORATORY 2**

**Title: Nodal and Mesh Analysis** 

| Taxonomy Level                                       |                  |                |             |                             |               |
|------------------------------------------------------|------------------|----------------|-------------|-----------------------------|---------------|
| 1. Knowledge                                         | 2. Comprehension | 3. Application | 4. Analysis | <ol><li>Synthesis</li></ol> | 6. Evaluation |
| Mapping CO.PO.Domain.KI: CO2.PO2.C4.CO4.PO3.P4.CTPS4 |                  |                |             |                             |               |

CO 02: Analyze DC circuit problems using circuit theorem, nodal analysis and mesh analysis PO 02: (Problem Analysis) Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

C4 : Analysis

CO 04: Construct DC and AC electric circuits to understand the concept of electrical quantities and verify circuit theorems.

PO 05: Modern Tool Usage - Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering activities, with an understanding of the limitations.

P4 : Mechanism

CTPS4: Capable of thinking beyond the limit.

# **Learning Outcomes**

At the end of the experiment, student should be able to:-

- a) Study node voltages and mesh currents.
- b) Apply KCL and KVL laws to the circuit.
- c) Compare calculated and measured results.

### Part A

#### Instruction

- 1. Measure the value for each resistor in Figure 1. ( $R_1$  = 1.5 k $\Omega$ ,  $R_2$  = 1 k $\Omega$ ,  $R_3$  = 3.3 k $\Omega$ ,  $R_4$ = 4.7 k $\Omega$ ,  $R_5$ = 1.8 k $\Omega$ )
- 2. Construct the circuit and set VS1=6 V, VS2=16 V.
- 3. Measure all node voltages.




Figure 1

## **Node questions:**

- 1. Set up the node equations for the circuit and solve for V<sub>2</sub> and V<sub>3</sub> using nominal values of resistances and voltage sources.
  - SHOW ALL CALCULATIONS IN YOUR REPORT.
- 2. Compare all measured node voltages with the calculated values. Give your comments.
- 3. From your observation in this experiment, what are the values of  $V_1$  and  $V_4$ ? State in your report.

#### Part B

#### Instruction

- 1. Repeat Step 1 & 2 in part A.
- 2. Measure all the mesh currents designated by  $I_1$ ,  $I_2$  and  $I_3$ .

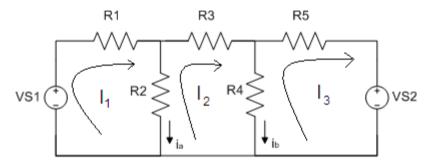



Figure 2

#### **Mesh questions:**

- 1. From your measured mesh currents, calculate the value of the branch currents,  $I_a$  and  $I_h$ .
- 2. Set up the mesh equations for the circuit and solve for  $I_1$ ,  $I_2$  and  $I_3$  using nominal values of resistances and voltage sources.
  - SHOW ALL CALCULATIONS IN YOUR REPORT.
- 3. Compare all measured mesh currents with the calculated values. Again give your comments whether the experiment results verify the theory of mesh analysis.
- 4. Calculate the power absorbed by resistors  $R_2$  and  $R_4$  using the currents measured in this experiment.

### **Laboratory Session and Submission of Report**

- 1. Please read the lab sheet given before the laboratory session.
- 2. The theoretical part should be done first before the laboratory session.
- 3. Construct your results into table.
- 4. Submission of report should be written in proper language and follow the instruction in the lab sheet. (Include: objective, procedure, hand calculation (theoretical), result, questions, discussion and conclusion.
- 5. Submit your report with the standard front page (given in website)

#### References

R. L. Boylestad and G. Kousourou, "Laboratory Solutions Manual to accompany Experiments in Circuit Analysis', Pearson Prentice Hall, 2004.