

## **BEE1133 Circuit Analysis**

## Chapter 3B Circuit Theorem(DC Circuits)

by Nor Rul Hasma Abdullah Faculty of Electrical & Electronics Engineering hasma@ump.edu.my



## **Chapter Description**

#### <u>Aims</u>

This chapter is aimed to:

1. Explain the Thevenin's theorem and Norton's theorem principle in solving problem related to electric circuit

#### **Expected Outcomes**

Student should be able to

- 1. Understand and apply the step for solving the circuit problem using Thevenin's Theorem
- 2. Understand and apply the step for solving the circuit problem using Norton's Theorem
- 3. Find the maximum power transfer

#### **References**

- 1. C. Alexander and M. Sadiku, "Fundamentals of Electric Circuits", 4th ed., McGraw-Hill, 2008.
- 2. J. Nilsson and S. Riedel, "Electric Circuits", 8th ed., Prentice Hall, 2008.



## **BASIC CONCEPT**

- 7.1 Thevenin's and Norton's Theorem(Independent and Dependent Source)
- 7.2 Maximum power transfer



Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251



## **THEVENIN'S THEOREM**



Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

## **Thevenin's Theorem**

Purpose: Replace the whole circuit between the two terminals with an equivalent simple circuit (R<sub>th</sub> and V<sub>th</sub>)

# □ A voltage source, V<sub>th</sub> in <u>SERIES</u> with one resistance R<sub>th</sub>





# Thevenin's Theorem State that:

 "Any two-terminal linear circuit can be replaced by an equivalent circuit consisting of voltage source in series with a single equivalent resistance."



## **Equivalent Circuit**





## **Process Flow**





# Step 3: Find R<sub>th</sub>





Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

## Step 3: Find R<sub>th</sub>





Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

#### **Step 3: Find R<sub>th</sub>: Simplified the circuit**





Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251





There are 2 choices(KVL) (1) Left loop (2) Right loop





2 Choices either Nodal or Mesh analysis

- 1. If nodal analysis (2 Node)=2-1(Gnd)=1 node=1 KCL equation
- 2. If mesh analysis (2 loop)=2-1(Supermesh)+ 1 Supermesh equation

=2 (1 KVL,1 Supermesh equation)

The different in between those 2, is time. (1 eq. vs 2 eq.)



#### Step 3:Find V<sub>th</sub> (Nodal Analysis)



### Step 3:Find V<sub>th</sub>



#### Step 3:Find V<sub>th</sub>



### **Step 4: Thevenin's Equivalent Circuit**





### **Step 4: Insert the R<sub>L</sub> into the Thevenin's Equivalent Circuit**





Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251







Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251



## **NORTON'S THEOREM**



Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

## **Norton's Theorem**

□ Purpose: Replace the whole circuit between the two terminals with an equivalent simple circuit ( $R_N$  and  $I_N$ )

# $\Box$ A current source, $I_N$ in <u>PARALLEL</u> with one resistance $R_N$





## **Norton's Theorem State that:**

 "Any two-terminal linear circuit can be replaced by an equivalent circuit consisting of current source in parallel with a single equivalent resistance."



## **Equivalent Circuit**





Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

## **Process Flow**







Assume that we are trying to find the current,  $I_x$  flow through 8- $\Omega$ .



## Step 2: Remove R<sub>L</sub>





Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251





## $\mathbf{R}_{\mathbf{N}} = \mathbf{R}_{\mathbf{th}}$ (refer previous note)



#### **Step 3:Find I<sub>N</sub> (Flow from terminal a to b)**







### **Step 4: Norton's Equivalent Circuit**





Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

## Step 4: Insert the R<sub>L</sub> into the Norton's Equivalent Circuit





#### **Step 5: Solve**





Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251





Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251





## WHAT IF THE CIRCUIT CONSIST OF DEPENDENT SOURCE?



## **Process Flow**



http://ocw.ump.edu.my/course/view.php?id=251

SA

## **Maximum Power Transfer**

żλΗΜ

the efficiency of the power transfer

the amount of power transfer.



Circuit Theorem(DC Circuits) by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251



## Maximum power transfer states:

"A load will receive maximum power from a linear bilateral dc network, when Its total resistive value is equal to the Thevenin resistance of the network seen by the load."



#### **Maximum Power Transfer**



Power for R<sub>L</sub>  
$$P = i^2 R = \left(\frac{V_{th}}{R_{th} + R_L}\right)^2 . R_L$$

 $V_{th}$  and  $R_{th}$  will be fixed. Therefore the power dissipated will be the  $R_{L}$ 

$$R_L = R_{th}$$

$$P_{\max} = \frac{V_{th}^{2} R_{L}}{(2R_{L})^{2}} = \frac{V_{th}^{2}}{4R_{th}}$$





#### Author Information

Nor Rul Hasma Abdullah (Ph. D) Senior Lecturer Email: <u>hasma@ump.edu.my</u> Google Scholar: <u>Nor Rul Hasma</u> Scopus ID : 35791718100



