BEE1133 Circuit Analysis

Chapter 3A Circuit Theorem(DC Circuits)

by
Nor Rul Hasma Abdullah
Faculty of Electrical \& Electronics Engineering hasma@ump.edu.my

Chapter Description

Aims

This chapter is aimed to:

1. Explain the Superpositions principle in solving problem related to electric circuit
2. Explain the source transformation principle

Expected Outcomes

Student should be able to

1. Apply the superposition principle for solving the electric circuits problem
2. Use the technique learn in chapter 1 and 2 for finding the current and voltage.
3. Apply the source transformation principle and draw the circuit for solving the electric circuits problem.

References

1. C. Alexander and M. Sadiku, "Fundamentals of Electric Circuits", 4th ed., McGraw-Hill, 2008.
2. J. Nilsson and S. Riedel, "Electric Circuits", 8th ed., Prentice Hall, 2008.

BASIC CONCEPT

6.1 Superposition Principles
6.2 Source Transformation

SUPERPOSITION'S THEOREM

Superposition Theorem

- Apply when the circuit consist 2 or more source that are not in series or parallel. (Why? Discuss with friend)
\square Assume that, each source is work independently and the algebraic sum is found to determine a particular unknown quantity of the network.

States:

> "The current through, or voltage across, an element in a bilateral network is equal to the algebraic sum of the currents or voltages produced independently by each source."

Remember!

Process

BASIC STEP

Assume that we are trying to find the current, I_{x} flow through resistor, 8Ω.

Step 1: Consider the effect of 5-V voltage source

\checkmark Terminated the 3-A current source by open circuited.
\checkmark Find I '.

Step 2: Consider the effect of 3-A current source

\checkmark Terminated the 5-V voltage source by short circuited.
\checkmark Find I ".

Step 3: Find the total I_{x}

$\|_{x}=1^{\prime}+1^{11}$

So, what is the answer?

SOURCE TRANSFORMATION'S THEOREM

Source Transformation

\square Simplifying the circuit
\square Independent Source ONLY
\square By transforming the source, the resistor can be simplified by series or parallel (Before, the resistor not in series or parallel)
\square The final circuit should consist ONLY 1 mesh loop and the element that being asked.

HOW TO TRANSFORM?

EY NC SA
http://ocw.ump.edu.my/course/view.php?id=251

(cc) (i) (3)

Remember!

Voltage source parallel with \mathbf{R}_{x}

- R_{x} neglect (remove from the circuit).
- The resistance has no effect on the equivalent circuit because it produce the same voltage in any resistor inserted parallel with V_{s}

Current source series with \mathbf{R}_{x}

- R_{x} neglect.
- The resistance has no effect on the equivalent circuit because it produce the same current in any resistor inserted series with the I_{s}

BASIC STEP

Assume that we are trying to find the current, I_{x} flow through resistor, 8Ω.

Step 1

Step 2

Assume that we are trying to find the current, I_{x} flow through resistor, 8Ω.

Step 3

Step 4

(c) ©ic)

Step 5

Step 6

Step 7

KVL

$$
\begin{aligned}
& -4.348+I_{x}(80 / 23)+I_{x}(8)=0 \\
& I_{x}=\frac{4.348}{\left(\frac{80}{23}\right)+8}=0.3788 \mathrm{~A}
\end{aligned}
$$

Author Information

Nor Rul Hasma Abdullah (Ph. D) Senior Lecturer Email:
hasma@ump.edu.my
Google Scholar:
Nor Rul Hasma
Scopus ID :
35791718100

