

BEE1133 Circuit Analysis

Chapter 3A Circuit Theorem(DC Circuits)

by Nor Rul Hasma Abdullah Faculty of Electrical & Electronics Engineering hasma@ump.edu.my

Chapter Description

<u>Aims</u>

This chapter is aimed to:

- 1. Explain the Superpositions principle in solving problem related to electric circuit
- 2. Explain the source transformation principle

Expected Outcomes

Student should be able to

- 1. Apply the superposition principle for solving the electric circuits problem
- 2. Use the technique learn in chapter 1 and 2 for finding the current and voltage.
- 3. Apply the source transformation principle and draw the circuit for solving the electric circuits problem.

References

- 1. C. Alexander and M. Sadiku, "Fundamentals of Electric Circuits", 4th ed., McGraw-Hill, 2008.
- 2. J. Nilsson and S. Riedel, "Electric Circuits", 8th ed., Prentice Hall, 2008.

BASIC CONCEPT

- 6.1 Superposition Principles
- 6.2 Source Transformation

SUPERPOSITION'S THEOREM

Circuit Theorem by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

Superposition Theorem

- Apply when the circuit consist 2 or more source that are not in series or parallel. (Why? Discuss with friend)
- □ Assume that, each source is work independently and the algebraic sum is found to determine a particular unknown quantity of the network.

States:

"The current through, or voltage across, an element in a bilateral network is equal to the algebraic sum of the currents or voltages produced independently by each source."

Remember!

Process

Assume that we are trying to find the current, I_x flow through resistor, 8 Ω .

Step 1: Consider the effect of 5-V voltage source

✓ Terminated the 3-A current source by open circuited.
✓ Find I'.

Step 2: Consider the effect of 3-A current source

✓ Terminated the 5-V voltage source by short circuited.
✓ Find I".

Step 3: Find the total I_x

$|_{x} = |' + |''$

So, what is the answer?

Circuit Theorem by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

SOURCE TRANSFORMATION'S THEOREM

Circuit Theorem by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

Source Transformation

- □ Simplifying the circuit
- □ Independent Source ONLY
- By transforming the source, the resistor can be simplified by series or parallel (Before, the resistor not in series or parallel)
- □ The final circuit should consist ONLY 1 mesh loop and the element that being asked.

HOW TO TRANSFORM?

Circuit Theorem by N.R.H. Abdullah http://ocw.ump.edu.my/course/view.php?id=251

Remember!

Voltage source parallel with R_x

- R_x neglect (remove from the circuit).
- The resistance has no effect on the equivalent circuit because it produce the same voltage in any resistor inserted parallel with V_s

Current source series with R_x

- R_x neglect.
- The resistance has no effect on the equivalent circuit because it produce the same current in any resistor inserted series with the I_s

Assume that we are trying to find the current, I_x flow through resistor, 8 Ω .

Assume that we are trying to find the current, I_x flow through resistor, 8 Ω .

Author Information

Nor Rul Hasma Abdullah (Ph. D) Senior Lecturer Email: <u>hasma@ump.edu.my</u> Google Scholar: <u>Nor Rul Hasma</u> Scopus ID : 35791718100

