

CHAPTER 7

Acceptance Sampling

Expected Outcomes

Determine the AOQ curve and the AOQL for a single sampling plan. Determine single sampling plans for stipulated producers risk and for stipulated consumers risk.

Briefly describe the different sampling plan systems.

Fundamental Aspects Universiti Malaysia PAHANG

Acceptance Sampling is a form of inspection applied to lots or batches of items before or after a process to judge conformance to predetermined standards.

Acceptance Sampling is very useful when:
Large numbers of items must be processed in a short amount of time.
The cost of "passing defectives" is low.
Fatigue/boredom is caused by inspecting large numbers of items.

Acceptance Sampling Universiti Malaysia PAHANG

□ Three important aspects of sampling: □Involves random sampling of the entire lot □Accept and Reject Lots (does not improve the quality) "Lot Sentencing" □Audit Tool □ Three approaches to "lot sentencing": □Accept with no inspection □100% inspection □Acceptance Sampling

□ Advantages Places responsibility where it belongs □Less expensive □Improves inspectors job. □ Applies to destructive testing □Lots are not accepted giving motivation for improvement

Sampling Plans

Sampling Plans specify the lot size, sample size, number of samples and acceptance/rejection criteria. Sampling plans involve: Single sampling, Double sampling, Multiple sampling, & Sequential

Sampling Plans

- Single Sampling Plan
 - N = lot size
 - n = sample size
 - c =acceptance number

If c or less non-conforming units are found in the sample, the lot is accepted, else it is rejected.

Single Sampling Plan Universiti Malaysia PAHANG

A single sampling plan is one where: A representative sample of n items is drawn from a lot size of N items □ Each item in the sample is examined and classified as good/defective □If the number of defective exceeds a specified rejection number (c) the whole lot is rejected; otherwise the whole lot is accepted

Double Sampling Plan

A Double Sampling Plan allows to take a second sample if the results of the original sample are inconclusive. □ Specifies the lot size, size of the initial sample, the accept/reject/inconclusive criteria for the initial sample (N, n1, c1 (Ac), r1(Re)) Specifies the size of the second sample and the acceptance/rejection criteria based on the total nonconformities observed in both the first and second sample (*n2,c2,r2*)

Double Sampling Plan

A first sample is taken with three possible decisions:

If the quality is very good, ≤ c1 accept lot
If the quality is very bad, ≥ reject lot
If between C1 and T1, take a second sample
Second sample is accepted if the total nonconformities are ≤ c2 or rejected if the total total nonconformities are ≥ r2

Multiple Sampling Planu Universiti Malaysia PAHANG

A *Multiple Sampling Plan* is similar to the double sampling plan in that successive trials are made, each of which has acceptance, rejection and inconclusive options.

Decision on Which Plan to Use

- Simplicity Single would be best and sequential the poorest.
- Administrative costs Least under single and greatest under sequential.
- Units inspected Greatest under single and least under sequential.
- Information Best under single and poorest under sequential.
- Psychological Impact Best under double.

Lot Formation

Considerations before inspection:
Lots should be homogeneous
Larger lots are more preferable than smaller lots
Lots should be conformable to the materials-handling systems used in both the vendor and consumer facilities

Statistical Aspects

The Operating Characteristic Curve: Measures the performance of an acceptance sampling plan □ Plots the probability of accepting the lot versus the lot fraction defective □ Shows the probability that a lot submitted with a certain fraction defective will be either accepted or rejected

OC Curve for Double Sampling Plan

OC Curves

There are two types of OC curves: □Type A Gives the probability of acceptance of an individual lot coming from finite production □Type B Gives the probability of acceptance for lots coming from a continuous production

OC CUrve Properties Universit

Sample size as a fixed % of lot size.
Sample size that is 10% of lot size.
Larger the sample size, the curve gets steeper.

Decrease the acceptance number, the the curve gets steeper.

UMP OPE%

Acceptable Quality Level (AQL)

The AQL is a percent defective that is the base line requirement for the quality of the producer's product. The producer would like to design a sampling plan such that there is a *high probability of accepting* a lot that has a defect level less than or equal to the AQL.

Average Outgoing Quality Limit

A plot of the AOQ (Y-axis) versus the incoming lot p (X-axis) will start at 0 for p = 0, and return to 0 for p = 1 (where every lot is 100% inspected and rectified). In between, it will rise to a maximum. This maximum, which is the worst possible long term AOQ, is called the Average Outgoing Quality Limit AOQL.

