BEE1133 Circuit Analysis

Chapter 1B Basic Concept

by
Nor Rul Hasma Abdullah
Faculty of Electrical \& Electronics Engineering hasma@ump.edu.my

Chapter Description

Aims

This chapter is aimed to:

1. Explain the Ohm's Law and Kirchhhof's Law to the students
2. Explain the different in between the node, branch and loop
3. Explain the resistive circuit

Expected Outcomes

Student should be able to

1. Explain and solved the question related to Ohm's law and Kirchhof's Law
2. Differentiate the node, branch and loop
3. Recognize the circuit either in series or parallel thus find the equivalent resistance.

References

1. C. Alexander and M. Sadiku, "Fundamentals of Electric Circuits", 4th ed., McGraw-Hill, 2008.
2. J. Nilsson and S. Riedel, "Electric Circuits", 8th ed., Prentice Hall, 2008.

BASIC CONCEPT

2.1 Ohm's Law and Kirchhoff's Law
2.2 Nodes, branches and loops
2.3 Resistive circuit: Series, parallel circuits and combination circuits

Basic Concept by N.R.H. Abdullah

OHM'S LAW

- The voltage, V across a resistor is directly proportional to the current, I flowing through the resistor.

MATHEMATICAL RELATIONSHIP OF V, I, and R

- Formulated with three variables: V, I, and R
- Relationship called Ohm's Law
- Three forms exist:

$$
I=\frac{V}{R} \quad V=I R \quad R=\frac{V}{I}
$$

Ohm's Triangle

$$
I=\frac{V}{R}
$$

$$
R=\frac{V}{I}
$$

RELATIONSHIP OF VOLTAGE AND CURRENT

- Voltage and Current Flow
- What happens if voltage increases or decreases?
- As voltage increases, current increases.
- As voltage decreases, current decreases.
- Resistance and Current Flow
- What happens if resistance increases or decreases?

RELATIONSHIP OF CURRENT TO RESISTANCE*

- Indirect Relationship
- Increase Resistance and Current will decrease
- Decrease Resistance and Current will increase
* Voltage held constant

POWER AND ENERGY

Defining power as rate of doing work/ the time rate of expending or absorbing energy

$$
P=\frac{d W}{d t}
$$

where $\mathrm{P}=$ power in Watts(W), w is energy in Joules(J), and t is time in seconds(s)

Calculating Energy From Constant Power

- Energy, W is the ability to do work
- If power is independent of time (i.e. a constant value), the equation $P=\frac{d W}{d t}$ becomes

$$
\begin{gathered}
\text { Power = Energy/time } \\
\text { P = W/t (Watt) }
\end{gathered}
$$

- One watt is the amount of power when one joule of energy used in one second

OHM'S LAW \& POWER CALCULATION

formulas relating voltage and current

Ohm's Law

A voltage- current relationship of a resistor

$$
V=i R
$$

The formula of power in relation to voltage and current for any circuit element

$$
\begin{gathered}
P=i V \\
P=i^{2} R \\
P=V^{2} / R
\end{gathered}
$$

OHM'S LAW \& POWER CALCULATION

Current enters through +ve terminal

Current enters through -ve terminal

$$
P=+I_{A} V
$$

$$
P=-I_{A} V
$$

Basic Concept by N.R.H. Abdullah

OHM'S LAW \& POWER CALCULATION

Some power can be negative(+ve) / positive(-ve)

$$
\begin{aligned}
P_{\text {absorb }} & =P_{\text {deliver }} \\
+P & =P \text { ose }
\end{aligned}
$$

NODE, BRANCH AND LOOP

KIRCHHOFF'S CURRENT LAW (KCL)

KCL states that the sum of currents at any node

 equals zero .$$
\sum_{n=1}^{N} i_{n}=0 \rightarrow I_{i n}=I_{o u t}
$$

where $N=$ number of branches connected to the node

$$
i_{n}=\text { the } n \text {th current entering (or leaving) the node. }
$$

KCL

$$
\left.\begin{array}{rl}
I_{\text {in }} & =I_{\text {out }} \\
5+(-3) & =\mathrm{i}+1+2 \\
\mathrm{i} & =5-3-1-2 \\
& =-1 \mathrm{~A}
\end{array}\right\} \text { negative sign } \quad \text { opposite direction }
$$

Choose

Add the current leaving the node (and subtract the one entering the node)

Therefore, the current should be entering the node
1 node $=1 \mathrm{KCL}$ equation

KIRCHHOFF'S VOLTAGE LAW (KVL)

KVL state that the sum of voltage drops around any closed path is zero

$$
\sum_{m=1}^{M} v_{m}=0 \rightarrow V_{i n}=V_{o u t}
$$

where $M=$ number of voltages in the loop (or the number of branches in the loop)

$$
v_{m}=\text { the } m \text { th voltage }
$$

KVL

We can apply LOOP = CLOCKWISE or ANTI-CLOCKWISE

Apply KVL Clockwise

$-v_{1}+v_{2}+v_{3}-v_{4}+v_{5}=0$
$v_{2}+v_{3}+v_{5}=v_{1}+v_{4}$
Σ Voltage drop $=\Sigma$ Voltage rise

TRY anticlockwise....

SERIES-PARALLEL CONNECTIONS

Elements in series carry the same current

$$
\begin{aligned}
& i_{1}=i_{2} \\
& i_{2}=i_{3}
\end{aligned}
$$

Thus.

$$
i_{1}=\dot{i}_{2}=i_{3}
$$

SERIES-PARALLEL CONNECTIONS

Elements in parallel have the same voltage drop KVL at Loop (1)

KVL at Loop(2)
$-V_{1}+V_{2}=0$
$-V_{2}+V_{3}=0$
$v_{1}=V_{2}$

RESISTIVE CIRCUIT: SERIES CONNECTION

Two elements are considered to be in series if the two elements are joint at a node which meets only the two elements and no other.

Elements in series carry the same current.

RESISTIVE CIRCUIT: PARALLEL CONNECTION AND COMBINITIONS

Elements are connected in parallel if they are connected at a single pair of node

Elements in parallel have the same voltage

Basic Concept by N.R.H. Abdullah

EQUIVALENT RESISTANCE

- The analysis of the circuit uses equivalent resistance as circuit reductions are performed.
- For instance, if a $6-k \Omega$ and a $3-k \Omega$ resistor are in parallel, their equivalent series resistance is $2 \mathrm{k} \Omega$.

SERIES-PARALLEL EQ. CCT

$$
R_{e q}=R_{1}+R_{2}+\ldots . .+R_{N}
$$

Where $n=$ the number of resistors

SERIES-PARALLEL EQ. CCT

calculator

$$
\begin{aligned}
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots+\frac{1}{R_{n}} \\
& \text { OR } \\
& R_{e q}=\frac{R_{1}+R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

= answer ${ }^{-1}$
$R_{\text {eq }}=R_{1} / / R_{2} / / R_{3} / / \ldots / / / R_{n}$

Basic Concept by N.R.H. Abdullah

Special Case for R: Short Circuit/Open Circuit

$$
i=0, \quad V=V_{s}
$$

$$
\mathrm{R}=\mathrm{V} / \mathrm{i}=\mathrm{V} / 0=\infty
$$

$v=0$,
$R=0 / i=0$

R

Neglect R!

Basic Concept by N.R.H. Abdullah

Author Information

Nor Rul Hasma Abdullah (Ph. D) Senior Lecturer Email:
hasma@ump.edu.my
Google Scholar:
Nor Rul Hasma
Scopus ID :
35791718100

