

FACULTY OF ELECTRICAL & ELECTRONICS ENGINEERING

FINAL EXAMINATION

COURSE	:	SIGNALS & NETWORKS
COURSE CODE	:	BEE2143
LECTURER	:	FARADILA NAIM NURUL WAHIDAH ARSHAD PROF. MADYA DR. ZUWAIRIE IBRAHIM
DATE	:	20 JUNE 2013
DURATION	:	3 HOURS
SESSION/SEMESTER	:	SESSION 2012/2013 SEMESTER II
PROGRAMME CODE	:	BEE/BEC/BEP

INSTRUCTIONS TO CANDIDATES

- 1. This question paper consists of FIVE (5) questions. Answer ALL questions in **PART A** and **ONE** question for **PART B**.
- 2. All answers to a new question should start on new page.
- 3. All the calculation answer and assumptions must be clearly stated.
- 4. Candidates are not allowed to bring any material other than those allowed by the invigilator into the examination room.

EXAMINATION REQUIREMENTS

- 1. Appendix I Table of Formula
- 2. Semilog Graph

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

This examination paper consists of FOURTEEN (14) printed pages including front page.

PART A (Answer ALL questions)

QUESTION 1

(a) Let x(t) and y(t) be given in Figure 1(a) and (b), respectively. Solve and sketch

$$z(t) = x(2t).y\left(\frac{1}{2}t+1\right)$$

[8 Marks] [CO1, PO2, C3]

BEE/BEC/BEP 1213II/BEE2143

CONFIDENTIAL

(b) Evaluate the convolution integrals of given signal f(t) and g(t) in Figure 2.

[12 Marks] [CO1, PO1, C3]

QUESTION 2

(a) The periodic waveform f(t) in Figure 3. Derive the trigonometric Fourier series of f(t).

[13 Marks] [CO2, PO1, C3]

Figure 3

- (b) (i) Refer to sawtooth signal in FOURIER SERIES APPENDIX, find the exponential Fourier Series of y(t) up to 3rd Harmonics as shown in Figure 4.
 - (ii) Sketch the double sided line spectrum (magnitude and phase) of the signal y(t).

[12 Marks] [CO2, PO1, C3]

Figure 4

QUESTION 3

(a) Briefly explain the effect of damping ratio, ζ , to the second order low pass filter.

[4 Marks] [CO3, PO4, C3]

(b) A transfer function of an RL circuit is given as

$$H(s) = \frac{s\tau}{1+s\tau}$$

Proof that the RL circuit behaves as a high-pass filter.

[4 Marks] [CO3, PO4, C4]

- (c) Figure 5 shows a filter circuit.
 - (i) Determine the transfer function $H_1(s) = y(t)/x(t)$ in terms of R_1 , R_2 dan C.
 - (ii) Plot the magnitud and phase response of $H_1(s)$. Assume $R_1 = 10 k\Omega$, $R_2 = 1 k\Omega$, and C = 7.5 nF.
 - (iii) Determine the type of filter based on the magnitude response.
 - (iv) Using Bode plot (or any method), find the expression of $H_1(s)$ in term of $H_2(s)$.

[22 Marks] [CO3, PO4, C4]

PART B (Answer only ONE question)

QUESTION 4

(a) Briefly discuss **TWO** differences between Fourier series and Fourier transform in the application of signal analysis and processing.

[4 Marks] [CO, PO1, C2]

- (b) x(t) is the input to an LTI system with unit impulse response h(t). The mathematical expression of signal x(t) is given as $x(t) = 4 + e^{jt} + 2e^{j3t}$. Signal h(t) is given in Figure 6.
 - (i) Find the Fourier Transform of signal x(t) and sketch spectrum $X(\omega)$.
 - (ii) By using properties of Fourier Transform, find the Fourier Transform of signal h(t) and then sketch spectrum $H(\omega)$.
 - (iii) Sketch the output spectrum of the LTI system, $Y(\omega)$ and then write the expression of the output signal y(t).

[12 Marks] [CO, PO1, C3]

Figure 6

- (c) Consider a system as shown in Figure 7. An input signal, x(t) is multiplied by a carrier signal $\cos(At)$. The resulting signal is then passed through an ideal filter, h(t). The signal is then multiplied by carrier signal $\cos(Bt)$. The spectrum of $X(\omega)$ and $H(\omega)$ are shown in Figure 7(b).
 - (i) Determine the value of ω_1 in order to get the following spectrum of $B(\omega)$ as shown in Figure 7(c).
 - (ii) If ω_1 is now set at 500 rad/s, determine the value of ω_2 and sketch the spectrum of filter $H_2(\omega)$ in order for the output signal $Y(\omega)$ to be equal to the input $X(\omega)$. Show your calculation by drawing spectrum $A(\omega), B(\omega)$ and $C(\omega)$.

[9 Marks] [CO, PO1, C4]

Figure 7

QUESTION 5

(a) The Laplace transform of a time function f(t) is denoted and defined as

$$L\{F(t)\} = F(s) = \int_{0}^{\infty} e^{-\infty} f(t) dt$$

- (i) By using the Laplace transform pairs as given in the table, find the Laplace transform for a function $g(t) = -9\sin(4t)$.
- (ii) By using the first principle (equation above), verify that the Laplace transform for g(t) is the same as the answer in Q5(a)(i).

[8 Marks] [CO2, PO1, C4]

(b) The signal x(t) shown in Figure 8 is a superposition of sawtooth, square wave, and pulses.

(i) Write a mathematical expression for x(t) in the general form of the unit step function.

(iii) Find the Laplace transform, X(s).

[7 Marks] [CO2, PO1, C4]

BEE/BEC/BEP 1213II/BEE2143

- (c) The coils of a large horseshoe type of electromagnet used in a generator are represented by a circuit model shown in Figure 9. The switch is closed at t = 0.
 - (i) Sketch the Laplace equivalent circuit at t = 0.
 - (ii) Find the current $i_1(t)$ provided by the power supply after the switch is closed. Note that $i_1(0) = i_2(0) = 0$.
 - (iii) After sometimes, a disconnection occurs in the circuit at point 'B'. Draw the Laplace equivalent circuit. Make a brief comment on the circuit.

[10 Marks] [CO2, PO2, C3]

Figure 9

END OF QUESTION PAPER

Appendix I – Table of Formulas

MATHEMATICAL FORMULAS

Trigonometric identities

sin(-x) = -sin x cos(-x) = cos x $\pm cos x = sin(x \pm 90^{\circ})$ $\mp sin x = cos(x \pm 90^{\circ})$ $-cos x = cos(x \pm 180^{\circ})$

$$e^{\pm jx} = \cos x \pm j \sin x$$
$$\cos x = \frac{e^{jx} + e^{-jx}}{2}$$
$$\sin x = \frac{e^{jx} - e^{-jx}}{j2}$$

 $\cos n\pi = (-1)^n$ $\sin n\pi = 0$ $\cos 2n\pi = 1$ $\sin 2n\pi = 0$

Complex numbers

$$\frac{1}{j} = -j \quad , \quad j^2 = -1$$

$$z = x + jy = r \angle \phi = r e^{j\phi}$$
where $r \angle \phi = \sqrt{x^2 + y^2} \angle \tan^{-1} \frac{y}{x}$

Integrals

$$\int \sin ax dx = -\frac{1}{a} \cos ax$$
$$\int \cos ax dx = \frac{1}{a} \sin ax$$
$$\int x \sin ax dx = \frac{1}{a^2} \sin ax - \frac{x}{a} \cos ax$$
$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$
$$\int e^{ax} dx = \frac{e^{ax}}{a}$$
$$\int xe^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$$
$$\int x^2 e^{ax} dx = \frac{e^{ax}}{a^3} (a^2 x^2 - 2ax + 2)$$
$$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx)$$
$$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx)$$
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$$
$$\int \frac{dx}{(a^2 + x^2)^2} = \frac{1}{2a^2} \left(\frac{x}{x^2 + a^2} + \frac{1}{a} \tan^{-1} \frac{x}{a}\right)$$

FOURIER SERIES

Exponential form

$$f(t) = c_0 + \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} c_n e^{jn\omega_0 t} \text{ where } c_0 = a_0, \qquad c_n = \frac{1}{T} \int_0^T f(t) e^{-jn\omega_0 t} dt, \ c_n = \frac{a_n - jb_n}{2}$$

Fourier Coefficients Table

Name	Waveform	C _o	$C_n, n \neq 0$	Comments
1.Square Wave	$\begin{array}{c c} x(t) \\ \hline \\ x_{0} \\ \hline \\ -X_{0} \\ \hline \\ T_{0} \\ t \end{array}$	0	$-j\frac{2X_{o}}{\pi n}$	$C_n = 0,$ <i>n</i> even
2. Sawtooth	x(t) x_{a} $-T_{a}$ T_{a} T_{a} $2T_{a}$ t	$\frac{X_{o}}{2}$	ј <u>Х.</u> 2 лл	
3. Triangular Wave	x(t) X_0 $-T_0$ T_0 T_0	$\frac{X_{0}}{2}$	$\frac{-2X_{o}}{(\pi n)^{2}}$	$C_n = 0,$ <i>n</i> even
4. Full-wave rectified	$\begin{array}{c c} x(t) \\ \hline \\ \hline \\ -2T_{\theta} - T_{\theta} \end{array} \begin{array}{c} X_{\theta} \\ T_{\theta} & 2T_{\theta} \end{array} \begin{array}{c} T_{\theta} \end{array}$	$\frac{2X_{\circ}}{\pi}$	$\frac{-2X_{o}}{\pi(4n^2-1)}$	
5. Half-wave rectified	$ \begin{array}{c c} x(t) \\ & X_{0} \\ \hline & T_{0} \\ \hline $	$\frac{X_{o}}{\pi}$	$\frac{-X_0}{\pi(n^2-1)}$	$C_n = 0,$ <i>n</i> odd, except for $C_1 = -j\frac{X_0}{4},$ and $C_{-1} = j\frac{X_0}{4}$
6. Square Wave	$\begin{array}{c c} & x(t) \\ \hline \\ $	$\frac{TX_{o}}{T_{o}}$	$\frac{\underline{TX}_{0}}{T_{0}}\operatorname{sinc}\frac{Tn\omega_{0}}{2}$	$\frac{Tn\omega_{0}}{2} = \frac{\pi Tn}{T_{0}}$
7. Impulse train	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_{o}}{T_{o}}$	$\frac{X_{o}}{T_{o}}$	

FOURIER TRANSFORM

Property	<i>F</i> (<i>t</i>)	<i>F</i> (<i>ω</i>)
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(\omega) + a_2F_2(\omega)$
Scaling	f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
Time shift	f(t-a)	$e^{-j\omega a}F(\omega)$
Frequency shift	$e^{j\omega_0 t}f(t)$	$F(\omega - \omega_0)$
Modulation	$\cos(\omega_0 t) f(t)$	$\frac{1}{2}[F(\omega+\omega_0)+F(\omega-\omega_0)]$
Time differentiation	$\frac{df}{dt}$	$j\omega F(\omega)$
	$\frac{d^n f}{dt^n}$	$(j\omega)^n F(\omega)$
Time integration	$\int_{-\infty}^{t} f(t) dt$	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$
Duality	F(t)	$2\pi f(-\omega)$

Properties of the Fourier Transform

Fourier Transform Pairs

f(t)	F(ω)	f(t)	F(w)
$\delta(t)$	1	$e^{-a t }$, $\operatorname{Re}(a) > 0$	$\frac{2a}{a^2+\omega^2}$
1	$2\pi\delta(\omega)$	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
<i>u</i> (<i>t</i>)	$\pi\delta(\omega) + \frac{1}{j\omega}$	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega)]$
$u(t+\tau)-u(t-\tau)$	$2\frac{\sin\omega\tau}{\omega}$	$\cos \omega_0 t$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)$
t	$-\frac{2}{\omega^2}$	$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$
$e^{at}u(-t) ,$ Re(a) > 0	$\frac{1}{a-j\omega}$	rect(t/τ)	$\tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$
$e^{-at}u(t) ,$ Re(a) > 0	$\frac{1}{a+j\omega}$	tri(t/τ)	$\tau \operatorname{sinc}^2\left(\frac{\omega\tau}{2}\right)$
$t^{n}e^{-at}u(t) ,$ Re(a) > 0	$\frac{n!}{\left(a+j\omega\right)^{n+1}}$	$e^{-at} \sin \omega_0 t u(t)$, Re(a) > 0	$\frac{\omega_0}{\left(a+j\omega\right)^2+\omega_0^2}$
		$e^{-at} \cos \omega_0 t u(t) ,$ Re(a) > 0	$\frac{a+j\omega}{\left(a+j\omega\right)^2+\omega_0^2}$

LAPLACE TRANSFORM

Definition of Laplace Transform

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_{0}^{\infty} f(t)e^{-st}dt$$

Properties of the Laplace transform

1

 $\frac{1}{s}$

1

s + an! \overline{s}^{n+1}

n!

 $\overline{(s+a)^{n+1}}$ ω

 $\overline{s^2 + \omega^2}$ S

 $\overline{s^2 + \omega^2}$

 $s\sin\theta + \omega\cos\theta$

 $s^2 + \omega^2$ $s\cos\theta - \omega\sin\theta$

 $s^2 + \omega^2$ ω

 $\overline{(s+a)^2+\omega^2}$ s + a

 $\overline{(s+a)^2+\omega^2}$

F(s)

Property	f(t)	F(s)	f(t)
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(s) + a_2F_2(s)$	$\delta(t)$
Scaling	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	<i>u</i> (<i>t</i>)
Time shift	f(t-a)u(t-a)	$e^{-as}F(s)$	e^{-at}
Frequency shift	$e^{-at}f(t)$	F(s+a)	
Time	df	$sF(s)-f(0^{-})$	t^n
differentiation	dt		
	$\frac{d^2f}{d}$	$s^2 F(s) - sf(0^-)$	$t^n e^{-at}$
	dt^2	$-f'(0^{-})$	
	$d^n f$	$s^{n}F(s) - s^{n-1}f(0^{-})$	$\sin \omega t$
	$\overline{dt^n}$	$-s^{n-2}f'(0^{-})$	$\cos \omega t$
		$-f^{(n-1)}(0^{-})$	
Time	$\int_{0}^{t} f(t) dt$	$\frac{1}{-F(s)}$	$\sin(\omega t + \theta)$
		S	$ \cos(\omega t + \theta)$
Frequency differentiation	$t^n f(t)$	$\int (-1)^n \frac{d^n F(s)}{d\omega^n}$	
Frequency	f(t)	$\int_{s}^{\infty} F(s) ds$	$e^{-at}\sin\omega t$
megration		E(a) = 1	-at
l ime periodicity	f(t) = f(t + nT)	$\frac{F_1(s)}{1 - e^{-sT}} = \frac{1}{1 - e^{-sT}}$	
Initial value	<i>f</i> (0)	$\lim_{s\to\infty} sF(s)$	
Final value	$f(\infty)$	$\lim_{s \to 0} sF(s)$	

-	-		
1.91	nlace	transform	nairs
LIA	prace	ci unsioi m	Perm

f(t)

.

s-domain equivalents

$$I_{L}(s) = \frac{V_{L}(s)}{sL} + \frac{i_{L}(0^{-})}{s}$$

or
$$V_{L}(s) = sLI_{L}(s) - Li_{L}(0^{-})$$
$$V_{C}(s) = \frac{1}{sC}I_{C}(s) + \frac{v_{C}(0^{-})}{s}$$

or
$$I_{C}(s) = sCV_{C}(s) - Cv_{C}(0^{-})$$