BEE2143 - Signals \& Networks

Chapter 7 - Laplace Transform

Raja M. Taufika R. Ismail
Universiti Malaysia Pahang

October 2, 2017

Definition of Laplace Transform

Properties of Laplace Transform

Inverse Laplace Transform

References

Definition of Laplace Transform

- Laplace transform is another method to transform a signal from time domain to frequency domain (s-domain)
- The basic idea of Laplace transform comes from the Fourier transform
- As we have seen in the previous chapter, not many functions have their Fourier transform such as t, t^{2}, e^{t}, etc.
- The Laplace transform formula is the modification of the Fourier transform formula:

$$
F(\omega)=\mathcal{F}[f(t)]=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t
$$

that is, the term $j \omega$ is replaced by s

- s is equal to $\sigma+j \omega$, where σ is a large positive real number
- The Laplace transform formula:

$$
F(s)=\mathcal{L}[f(t)]=\int_{0^{-}}^{\infty} f(t) e^{-s t} d t
$$

- However, the Laplace transform only support the function $f(t)$ which domain $t \geq 0$
- In order for $f(t)$ to have a Laplace transform, the integral must converge to a finite value
- Since $\left|e^{j \omega t}\right|=1$ for any value of t, the integral converges when

$$
\int_{0^{-}}^{\infty} e^{-\sigma t}|f(t)| d t<\infty
$$

Example 15.1, pg. 678 (Alexander \& Sadiku, 2009)

Determine the Laplace transform of each of the following functions:
(a) $u(t)$
(b) $e^{-a t} u(t), a>0$
(c) $\delta(t)$

Answer:
(a) $\frac{1}{s}$
(b) $\frac{1}{s+a}$
(c) 1

- Comparison between Laplace transform and Fourier transform:
Laplace transform \quad Fourier transform
- One-sided (the integral is over - Applicable to functions de-
$0<t<\infty)$, making it only useful for positive time functions, $f(t), t>0$
- Applicable to a wider range of functions
- Better suited for the analysis of transient problems involving initial conditions, since it permits the inclusion of the initial conditions

Laplace Transform Pairs

$\boldsymbol{f}(\boldsymbol{t})$	$\boldsymbol{F}(\mathbf{s})$
$\delta(t)$	1
$u(t)$	$\frac{1}{s}$
$e^{-a t} u(t)$	$\frac{1}{s+a}$
$t u(t)$	$\frac{1}{s^{2}}$
$t^{n} u(t)$	$\frac{n!}{s^{n+1}}$
$t e^{-a t} u(t)$	$\frac{1}{(s+a)^{2}}$
$t^{n} e^{-a t} u(t)$	$\frac{n!}{(s+a)^{n+1}}$
$\sin \omega t u(t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cos \omega t u(t)$	$\frac{\square}{s^{2}+\omega^{2}}$
$\sin (\omega t+\theta) u(t)$	$\frac{s \sin \theta+\omega \cos \theta}{s^{2}+\omega^{2}}$
$\cos (\omega t+\theta) u(t)$	$\frac{s \cos \theta-\omega \sin \theta}{s^{2}+\omega^{2}}$
$e^{-a t} \sin \omega t u(t)$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$
$e^{-a t} \cos \omega t u(t)$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$

Properties of Laplace Transform

- Linearity

$$
\mathcal{L}[a f(t)+b g(t)]=a F(s)+b G(s)
$$

- Time scaling

$$
\mathcal{L}[f(a t)]=\frac{1}{a} F\left(\frac{s}{a}\right)
$$

- Time shifting

$$
\mathcal{L}[f(t-a) u(t-a)]=e^{-a s} F(s)
$$

- Frequency shifting

$$
\mathcal{L}\left[e^{-a t} f(t)\right]=F(s+a)
$$

- Time differentiation

$$
\begin{aligned}
\mathcal{L}\left[\frac{d f(t)}{d t}\right] & =s F(s)-f(0) \\
\mathcal{L}\left[\frac{d^{2} f(t)}{d t^{2}}\right] & =s^{2} F(s)-s f(0)-f^{\prime}(0) \\
\mathcal{L}\left[\frac{d^{n} f(t)}{d t^{n}}\right] & =s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0)
\end{aligned}
$$

- Time integration

$$
\mathcal{L}\left[\int_{0}^{t} f(t) d t\right]=\frac{F(s)}{s}
$$

- Frequency differentiation

$$
\mathcal{L}\left[t^{n} f(t)\right]=(-1)^{n} \frac{d^{n} F(s)}{d s^{n}}
$$

- Frequency integration

$$
\mathcal{L}\left[\frac{f(t)}{t}\right]=\int_{s}^{\infty} F(s) d s
$$

- Time periodicity

$$
\mathcal{L}[f(t)]=\frac{F_{1}(s)}{1-e^{-s T}}, f(t)=f(t+T)
$$

- Initial value

$$
f(0)=\lim _{s \rightarrow \infty} s F(s)
$$

- Final value

$$
f(\infty)=\lim _{s \rightarrow 0} s F(s)
$$

- Convolution

$$
\mathcal{L}[f(t) * g(t)]=F(s) G(s)
$$

Practice Problem 15.3, pg. 687 (Alexander \& Sadiku, 2009)

Find the Laplace transform of $f(t)=\left(\cos 3 t+e^{-5 t}\right) u(t)$.
Answer:

$$
F(s)=\frac{2 s^{2}+5 s+9}{(s+5)\left(s^{2}+9\right)}
$$

Practice Problem 15.4, pg. 688 (Alexander \& Sadiku, 2009)

Determine the Laplace transform of $f(t)=t^{2} \cos 3 t u(t)$.
Answer:

$$
F(s)=\frac{2 s\left(s^{2}-27\right)}{\left(s^{2}+9\right)^{3}}
$$

Practice Problem 15.5, pg. 688 (Alexander \& Sadiku, 2009)

Find the Laplace transform of the function $h(t)$ in Fig. 15.6.

Answer:
BEE2143

$$
H(s)=\frac{5}{o}\left(2-{ }_{18}-4 s-e^{-8 s}\right)
$$

Practice Problem 15.6, pg. 689 (Alexander \& Sadiku, 2009)

Determine the Laplace transform of the periodic function in Fig. 15.8 .

Answer:

$$
\left.F(s)=\frac{1-e^{-2 s}}{s\left(1-e^{-5 s}\right)}\right)
$$

Practice Problem 15.7, pg. 690 (Alexander \& Sadiku, 2009)

Obtain the initial and the final values of

$$
G(s)=\frac{3 s^{3}+2 s+10}{s(s+2)^{2}(s+3)}
$$

Answer: 3, 0.83333

Inverse Laplace Transform

- The inverse Laplace transform is defined as

$$
f(t)=\mathcal{L}^{-1}[F(s)]=\frac{1}{j 2 \pi} \int_{\sigma_{1}-j \infty}^{\sigma_{1}+j \infty} F(s) e^{s t} d s
$$

where the integration is performed along a straight line $\left(\sigma_{1}+j \omega,-\infty<\omega<\infty\right)$ in the region of convergence, $\sigma_{1}>\sigma_{c}$

- The direct application of this equation involves some knowledge about complex analysis
- For this reason, we will not use this equation to find the inverse Laplace transform
- We will rather use a look-up table of the Laplace transform pairs
- Suppose $F(s)$ has the general form of

$$
F(s)=\frac{N(s)}{D(s)}
$$

where $N(s)$ is the numerator polynomial and $D(s)$ is the denominator polynomial

- The roots of $N(s)$ are called the zeros of $F(s)$, while the roots of $D(s)$ are the poles of $F(s)$
- We use partial fraction expansion to break $F(s)$ down into simple terms whose inverse transform we obtain from the Laplace transform pairs table
- Thus, finding the inverse Laplace transform of $F(s)$ involves two steps
- Steps to Find the Inverse Laplace Transform:

1. Decompose $F(s)$ into simple terms using partial fraction expansion.
2. Find the inverse of each term by matching entries in Laplace transform pairs table

- The three possible forms $F(s)$ may take:

1. Simple poles

$$
F(s)=\frac{A}{s+a}+\frac{B}{s+b}+\ldots
$$

2. Repeated poles

$$
F(s)=\frac{A_{n}}{(s+p)^{n}}+\ldots+\frac{A_{2}}{(s+p)^{2}}+\frac{A_{1}}{s+p}
$$

3. Complex poles

$$
F(s)=\frac{A_{1} s+A_{2}}{s^{2}+b s+c}+\ldots
$$

Practice Problem 15.10, pg. 695 (Alexander \& Sadiku, 2009)

Obtain $g(t)$ if

$$
G(s)=\frac{s^{3}+2 s+6}{s(s+1)^{2}(s+3)}
$$

Answer:

$$
g(t)=\left(2-3.25 e^{-t}-1.5 t e^{-t}+2.25 e^{-3 t}\right) u(t)
$$

Practice Problem 15.11, pg. 697 (Alexander \& Sadiku, 2009)

Find $g(t)$ given that

$$
G(s)=\frac{10}{(s+1)\left(s^{2}+4 s+13\right)}
$$

Answer:

$$
g(t)=\left(e^{-t}-e^{-2 t} \cos 3 t-\frac{1}{3} e^{-2 t} \sin 3 t\right) u(t)
$$

Problem 15.37, pg. 712 (Alexander \& Sadiku, 2009)

Find the inverse Laplace transform of:
(a) $H(s)=\frac{s+4}{s(s+2)}$
(b) $G(s)=\frac{s^{2}+4 s+5}{(s+3)\left(s^{2}+2 s+2\right)}$
(c) $F(s)=\frac{e^{-4 s}}{s+2}$
(d) $D(s)=\frac{10 s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$

Problem 15.37, pg. 712 (cont.)

Answer:

(a) $h(t)=\left(2-e^{-2 t}\right) u(t)$
(b) $g(t)=\left(0.4 e^{3 t}+0.6 e^{-t} \cos t+0.8 e^{-t} \sin t\right) u(t)$
(c) $f(t)=e^{-2(t-4)} u(t-4)$
(d) $d(t)=\frac{10}{3}(\cos t-\cos 2 t) u(t)$

Problem 15.48, pg. 713 (Alexander \& Sadiku, 2009)

Find $f(t)$ using convolution given that:
(a) $F(s)=\frac{4}{\left(s^{2}+2 s+5\right)^{2}}$
(b) $F(s)=\frac{2 s}{(s+1)\left(s^{2}+4\right)}$

Answer:
(a) $f(t)=e^{-t}(0.25 \sin 2 t-0.5 t \cos 2 t) u(t)$
(b) $f(t)=\left(-0.4 e^{-t}+0.4 \cos 2 t+0.8 \sin 2 t\right) u(t)$

List of References

1. C.K. Alexander and M.N.O. Sadiku (2009), Fundamentals of Electric Circuits 4th ed., New York: McGraw-Hill.
