BEE2143 - Signals \& Networks

Chapter 6 - Applications of the Fourier Transform

Raja M. Taufika R. Ismail
Universiti Malaysia Pahang

September 29, 2017

Circuit analysis

Parseval's theorem

Amplitude modulation

References

Circuit analysis

- The Fourier transform generalizes the phasor technique to nonperiodic functions
- Therefore, we apply Fourier transforms to circuits with nonsinusoidal excitations in exactly the same way we apply phasor techniques to circuits with sinusoidal excitations
- Thus, Ohm's law is still valid
- Once we transform the functions for the circuit elements into the frequency domain and take the Fourier transforms of the excitations, we can use circuit techniques
- Although the Fourier transform method produces a response that exists for $-\infty<t<\infty$, Fourier analysis cannot handle circuits with initial conditions
- The transfer function is defined as the ratio of the output response $Y(\omega)$ to the input excitation $X(\omega)$

$$
H(\omega)=\frac{Y(\omega)}{X(\omega)}
$$

- This equation shows that if we know the transfer function and the input, we can readily find the output

Practice Problem 18.7, pg. 830 (Alexander \& Sadiku, 2009)

Determine $v_{o}(t)$ in Fig. 18.19 if
$v_{i}(t)=5 \operatorname{sgn}(t)=(-5+10 u(t)) \mathrm{V}$.

Answer: $-5+10\left(1-e^{-4 t}\right) u(t) \mathrm{V}$

Practice Problem 18.8, pg. 831 (Alexander \& Sadiku, 2009)

Find the current $i_{o}(t)$ in the circuit in Fig. 18.21, given that $i_{s}(t)=5 \cos 4 t \mathrm{~A}$.

Answer: $2.95 \cos \left(4 t+26.57^{\circ}\right) \mathrm{A}$

Problem 18.40, pg. 845 (Alexander \& Sadiku, 2009)

Determine the current $i(t)$ in the circuit of Fig. 18.42(b), given the voltage source shown in Fig. 18.42(a).

Answer:
$i(t)=\left(1-e^{-0.5 t}\right) u(t)-2\left[1-e^{-0.5(t-1)}\right] u(t-1)+\left[1-e^{-0.5(t-2)}\right] u(t-2) \mathrm{A}$
BEE2143

Problem 18.41, pg. 845 (Alexander \& Sadiku, 2009)

Determine the Fourier transform of $v(t)$ in the circuit shown in Fig. 18.43 .

Answer:

$$
V(\omega)=\frac{j 2 \omega(4.5+j 2 \omega)}{(2+j \omega)\left(4-2 \omega^{2}+j \omega\right)}
$$

Parseval's theorem

- Parseval's theorem states that the total energy delivered to a $1-\Omega$ resistor equals the total area under the square of $f(t)$ or $1 / 2 \pi$ times the total area under the square of the magnitude of the Fourier transform of $f(t)$

$$
W_{1 \Omega}=\int_{-\infty}^{\infty} f^{2}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\omega)|^{2} d \omega
$$

- Since $|F(\omega)|^{2}$ is an even function, we may integrate from to and double the result; that is,

$$
W_{1 \Omega}=\frac{1}{\pi} \int_{0}^{\infty}|F(\omega)|^{2} d \omega
$$

- We may also calculate the energy in any frequency band $\omega_{1}<\omega<\omega_{2}$ as

$$
W_{1 \Omega}=\frac{1}{2 \pi} \int_{\omega_{1}}^{\omega_{2}}|F(\omega)|^{2} d \omega
$$

Practice Problem 18.9, pg. 834 (Alexander \& Sadiku,

 2009)(a) Calculate the total energy absorbed by a $1-\Omega$ resistor with $i(t)=5 e^{-2|t|} \mathrm{A}$ in the time domain.
(b) Repeat (a) in the frequency domain.

Answer: (a) $12.5 \mathrm{~J}, \quad$ (b) 12.5 J

Practice Problem 18.10, pg. 835 (Alexander \& Sadiku, 2009)

A $2-\Omega$ resistor has $i(t)=2 e^{-t} u(t) \mathrm{A}$. What percentage of the total energy is in the frequency band $-4<\omega<4 \mathrm{rad} / \mathrm{s}$?

Answer: 84.4\%

Amplitude modulation

- Amplitude modulation (AM) is a process whereby the amplitude of the carrier is controlled by the modulating signal
- Suppose the audio information, such as voice or music (or the modulating signal in general) to be transmitted is $m(t)=V_{m} \cos \omega_{m} t$, while the high-frequency carrier is $c(t)=V_{c} \cos \omega_{c} t$, where $\omega_{c} \gg \omega_{m}$
- Then an AM signal $f(t)$ is given by

$$
f(t)=[1+m(t)] c(t)=V_{c}[1+m(t)] \cos \omega_{c} t
$$

- We can use the amplitude modulation property together with the Fourier transform of the cosine function to determine the spectrum of the AM signal:

$$
\begin{aligned}
F(\omega) & =\mathcal{F}\left[V_{c} \cos \omega_{c} t\right]+\mathcal{F}\left[V_{c} m(t) \cos \omega_{c} t\right] \\
& =V_{c} \pi\left[\delta\left(\omega-\omega_{c}\right)+\delta\left(\omega+\omega_{c}\right)\right]+\frac{V_{c}}{2}\left[M\left(\omega-\omega_{c}\right)+M\left(\omega+\omega_{c}\right)\right.
\end{aligned}
$$

- The AM signal consists of the carrier and two other sinusoids
- The sinusoid with frequency is known as the lower sideband, while the one with frequency is known as the upper sideband

Example 18.11, pg. 838 (Alexander \& Sadiku, 2009)

A music signal has frequency components from 15 Hz to 30 kHz . If this signal could be used to amplitude modulate a $1.2-\mathrm{MHz}$ carrier, find the range of frequencies for the lower and upper sidebands.

Answer: $1,170,000$ to $1,199,985 \mathrm{~Hz}$ and $1,200,015$ to $1,230,000$ Hz

Practice Problem 18.11, pg. 838 (Alexander \& Sadiku, 2009)

If a $2-\mathrm{MHz}$ carrier is modulated by a $4-\mathrm{kHz}$ intelligent signal, determine the frequencies of the three components of the AM signal that results.

Answer: $2,004,000 \mathrm{~Hz}, \quad 2,000,000 \mathrm{~Hz}, \quad 1,996,000 \mathrm{~Hz}$

List of References

1. C.K. Alexander and M.N.O. Sadiku (2009), Fundamentals of Electric Circuits 4th ed., New York: McGraw-Hill.
