

BEE2143 – Signals & Networks Chapter 5 – Fourier Transform

Raja M. Taufika R. Ismail

Universiti Malaysia Pahang

September 29, 2017

Definition and Properties of Fourier Transform

Fourier Transform using derivative technique

Inverse Fourier Transform

References

Definition and Properties of Fourier Transform

- Fourier transform is another method to transform a signal from time domain to frequency domain
- The basic idea of Fourier transform comes from the complex Fourier series
- Practically, many signals are non-periodic
- \blacktriangleright Fourier transform use the principal of the Fourier series, with assumption that the period of the non-periodic signal is infinity $(T\to\infty)$

Definition of the Fourier transform:

$$F(\omega) = \mathcal{F}[f(t)] = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

- Generally, the Fourier transform $F(\omega)$ exists when the Fourier integral converges
- ► A sufficient but not necessary condition for a function f(t) to have a Fourier transform is, it can be completely integrable, i.e.

$$\int_{-\infty}^{\infty} |f(t)| dt < \infty$$

• Comparison between Fourier series and Fourier transform:

Definition and Properties of Fourier Transform

<i>f(t)</i>	F(ω)
$\delta(t)$	1
1	$2\pi\delta(\omega)$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$u(t+\tau) - u(t-\tau)$	$2\frac{\sin\omega\tau}{\omega}$
t	$-\frac{2}{\omega^2}$
$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$
$e^{-at}u(t)$	$\frac{1}{a+j\omega}$
$e^{at}u(-t)$	$\frac{1}{a-j\omega}$
$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
$\cos \omega_0 t$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$e^{-at}\sin\omega_0 tu(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$
$e^{-at}\cos\omega_0 t u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$

Example 18.2, pg. 815 (Alexander & Sadiku, 2009)

Derive the Fourier transform of a single rectangular pulse of width $\tau=2$ and height A=10, shown in Fig. 18.4.

Answer:

$$F(\omega) = 20 \operatorname{sinc} \omega$$

Practice Problem 18.2, pg. 815 (Alexander & Sadiku, 2009)

Obtain the Fourier transform of the function in Fig. 18.6.

Answer:

$$F(\omega) = \frac{10(\cos\omega - 1)}{j\omega}$$

Problem 18.7, pg. 842 (Alexander & Sadiku, 2009)

Find the Fourier transforms of the signals in Fig. 18.32.

Answer:

$$F_1(\omega) = \frac{2 - e^{-j\omega} - e^{-j2\omega}}{j\omega}, \quad F_2(\omega) = \frac{5e^{-j2\omega}}{\omega^2}(1 + j2\omega) - \frac{5}{\omega^2}$$
Bee2143
9
RMT

- Definition and Properties of Fourier Transform

Properties of the Fourier transform:

Linearity

$$\mathcal{F}[af(t) + bg(t)] = aF(\omega) + bG(\omega)$$

Time scaling

$$\mathcal{F}[f(at)] = \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$$

Time shifting

$$\mathcal{F}[f(t-a)] = e^{-j\omega a} F(\omega)$$

Frequency shifting

$$\mathcal{F}[e^{jat}f(t)] = F(\omega - a)$$

Amplitude modulation

$$\mathcal{F}[f(t)\cos\omega_0 t] = \frac{1}{2}F(\omega - \omega_0) + \frac{1}{2}F(\omega + \omega_0)$$

BEE2143 – Signals & Networks

-Definition and Properties of Fourier Transform

Properties of the Fourier transform (cont.):

Time differentiation

$$\mathcal{F}\left[\frac{d^n f(t)}{dt^n}\right] = (j\omega)^n F(\omega)$$

Time integration

$$\mathcal{F}\left[\int_{-\infty}^{t} f(t)dt\right] = \frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$$

Frequency differentiation

$$\mathcal{F}[t^n f(t)] = j^n \frac{d^n F(\omega)}{d\omega^n}$$

Reversal

$$\mathcal{F}[f(-t)] = F(-\omega) = F^*(\omega)$$

- Definition and Properties of Fourier Transform

Properties of the Fourier transform (cont.):

Duality

$$\mathcal{F}[F(t)] = 2\pi f(-\omega)$$

• Convolution in t

$$\mathcal{F}[f(t) * g(t)] = F(\omega)G(\omega)$$

 \blacktriangleright Convolution in ω

$$\mathcal{F}[f(t)g(t)] = \frac{1}{2\pi}F(\omega) * G(\omega)$$

-Definition and Properties of Fourier Transform

Problem 18.23, pg. 843 (Alexander & Sadiku, 2009)

If the Fourier transform of f(t) is

 $\frac{10}{(2+j\omega)(5+j\omega)}$

determine the transforms of the following:

(a)
$$f(-3t)$$
 (b) $f(2t-1)$ (c) $f(t)\cos 2t$
(d) $\frac{df(t)}{dt}$ (e) $\int_{-\infty}^{t} f(t)dt$

- Definition and Properties of Fourier Transform

Problem 18.23, pg. 843 (cont.)

Answer:

(a)
$$\frac{30}{(6-j\omega)(15-j\omega)}$$

(b)
$$\frac{20e^{-j\omega/2}}{(4+j\omega)(10+j\omega)}$$

(c)
$$\frac{5}{[2+j(\omega+2)][5+j(\omega+2)]} + \frac{5}{[2+j(\omega-2)][5+j(\omega-2)]}$$

(d)
$$\frac{j10\omega}{(2+j\omega)(5+j\omega)}$$

(e)
$$\frac{10}{j\omega(2+j\omega)(5+j\omega)} + \pi\delta(\omega)$$

BEE2143

RMT

Fourier Transform using derivative technique

- \blacktriangleright The simplest Fourier transform is on the delta function, where $\mathcal{F}[\delta(t)]=1$
- Using this idea, before we transformed a function, we differentiate it until its derivative is expressed in delta functions form
- > The important properties in implementing this technique are:

$$\mathcal{F}\left[\frac{d^n f(t)}{dt^n}\right] = (j\omega)^n F(\omega) \quad \text{and} \quad \mathcal{F}[\delta(t-a)] = e^{-j\omega a}$$

Example 18.5, pg. 827 (Alexander & Sadiku, 2009)

Find the Fourier transform of the function in Fig. 18.14.

- Fourier Transform using derivative technique

Example 18.5, pg. 827 (cont.)

Answer:

BEE2143

RMT

Problem 18.5, pg. 841 (Alexander & Sadiku, 2009)

Obtain the Fourier transform of the signal shown in Fig. 18.30.

BEE2143

RMT

Inverse Fourier Transform

► The definition of Fourier transform is

$$F(\omega) = \mathcal{F}[f(t)] = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

The inverse Fourier transform is defined as

$$f(t) = \mathcal{F}^{-1}[F(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Note that the function f(t) and its transform F(ω) can be derived from each other

The principle of duality

 \blacktriangleright If we interchange t and ω such as

$$f(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t) e^{j\omega t} dt$$

and replace ω with $-\omega$ such as

$$f(-\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t) e^{-j\omega t} dt,$$

we have

$$\mathcal{F}[F(t)] = 2\pi f(-\omega)$$

This is an important property to find the Fourier transform of certain functions which their Fourier integral diverges

Example 18.6, pg. 828 (Alexander & Sadiku, 2009)

Obtain the inverse Fourier transform of: (a) $F(\omega) = \frac{10j\omega + 4}{(j\omega)^2 + 6j\omega + 8}$ (b) $G(\omega) = \frac{\omega^2 + 21}{\omega^2 + 9}$

Answer:

(a)
$$f(t) = (18e^{-4t} - 8e^{-2t})u(t)$$

(b) $g(t) = \delta(t) + 2e^{-3|t|}$

Problem 18.27, pg. 844 (Alexander & Sadiku, 2009)

Find the inverse Fourier transforms of the following functions:

(a)
$$F(\omega) = \frac{100}{j\omega(j\omega + 10)}$$

(b)
$$G(\omega) = \frac{10j\omega}{(-j\omega + 2)(j\omega + 3)}$$

(c)
$$H(\omega) = \frac{60}{-\omega^2 + j40\omega + 1300}$$

(d)
$$Y(\omega) = \frac{\delta(\omega)}{(j\omega + 1)(j\omega + 2)}$$

Problem 18.27, pg. 844 (cont.)

Answer:

(a)
$$f(t) = 5 \operatorname{sgn}(t) - 10e^{-10t}u(t)$$

(b) $g(t) = 4e^{2t}u(-t) - 6e^{-3t}u(t)$
(c) $h(t) = 2e^{-20t} \sin 30tu(t)$
(d) $y(t) = \frac{1}{4\pi}$

Problem 18.28, pg. 844 (Alexander & Sadiku, 2009)

Find the inverse Fourier transforms of: (a) $\frac{\pi\delta(\omega)}{(5+j\omega)(2+j\omega)}$ (b) $\frac{10\delta(\omega+2)}{j\omega(j\omega+1)}$ (c) $\frac{20\delta(\omega-1)}{(2+j\omega)(3+j\omega)}$ (d) $\frac{5\pi\delta(\omega)}{5+j\omega} + \frac{5}{j\omega(5+j\omega)}$ BEE2143 – Signals & Networks

Problem 18.28, pg. 844 (cont.)

Answer: (a) $\frac{1}{20}$ (b) $-\frac{5e^{-j2t}}{2\pi(4+j)}$ (c) $\frac{2e^{jt}}{\pi(1+j)}$ (d) $(1-e^{-5t})u(t)$

List of References

1. C.K. Alexander and M.N.O. Sadiku (2009), Fundamentals of Electric Circuits 4th ed., New York: McGraw-Hill.