ヘ My home
Consider the function $y(t)$ shown in the following figure.


The function can be expressed as

Select one:a. $\operatorname{rect}\left(t+\frac{1}{2}\right)-\operatorname{rect}\left(t-\frac{1}{2}\right)$b. $\operatorname{rect}\left(t-\frac{1}{2}\right)-\operatorname{rect}\left(t-\frac{3}{2}\right)$c. $\operatorname{rect}\left(t+\frac{1}{2}\right)-\operatorname{rect}\left(t+\frac{3}{2}\right)$d. $\operatorname{rect}\left(t-\frac{1}{2}\right)+\operatorname{rect}\left(t+\frac{1}{2}\right)$

## Question 2

Not yet answered

Marked out of 1.00
P Flag question
Edit question

Which graph represents the following function?

$$
z(t)=\operatorname{sgn}(t-1)+\operatorname{sgn}(t-2)+2
$$

Select one:

b.
$z(t)$
○

$\bigcirc$


## Question 3

Not yet answered
Marked out of 1.00
P Flag question

* Edit question


## Question 4

Not yet answered

What is the value of the following expression?
$\int_{1}^{2} e^{t}\left(t^{2}-1\right) \delta(t-5) d t$

Select one:a. 0b. $\infty$c. $24 e^{5}$d. $24 e^{5} \delta(5)$

The following figure shows the graph of the function $\operatorname{tri}(t)$.
$\xrightarrow{P \text { Flag question }}$

Which is the graph of $3 \operatorname{tri}(2 t-1) ?$

## Select one:



○
c.



## Question 5

Not yet answered
Marked out of 1.00
P Flag question
Edit question

Consider the graph in the following figure.


The function $g(t)$ can be described as

Select one:a. $t u(t)-2 t u(t-1)+t u(t-3)$b. $2 t u(t)+(3-3 t) u(t-1)+(t-3) u(t-3)$c. $2 t u(t)+(t+3) u(t-1)+(3-t) u(t-3)$d. $(t+3) u(t)+(3-3 t) u(t-1)+(3-t) u(t-3)$

## Question 6 <br> Not yet answered <br> Marked out of 1.00 <br> - Flag question <br> 蝗 Edit question <br> 

What is the graph of $4 h(t)+1$, if the function $h(t)$ is described by the following graph?

## Select one:

b.
c.
d.



The convolution of $x(t)^{*} h(t)$ for the interval $0<t<1$ is calculated as

Select one:

- a. $\int_{0}^{1} 2 \lambda d \lambda$b. $\int_{0}^{1} \lambda d \lambda$c. $\int_{0}^{t} \lambda d \lambda$d. $\int_{0}^{t} 2 \lambda d \lambda$


## Question 8 <br> Not yet answered

Marked out of 1.00
PFlag question
療 Edit question

Question 9
Not yet answered
Marked out of 1.00

PFlag question
療 Edit question

The convolution of $x(t)^{*} h(t)$ for the interval $1<t<2$ is calculated as

Select one:a. $\int_{2}^{t} 2 \lambda d \lambda$b. $\int_{0}^{2} \lambda d \lambda$c. $\int_{t-2}^{2} 2 \lambda d \lambda$d. $\int_{t-1}^{t} \lambda d \lambda$

## Given



Given $f(t)=u(t)$ and $g(t)=4 e^{-2 t} u(t)$. Calculate $f(t) * g(t)$.

Select one:a. $\left(1-e^{-2 t}\right) u(t)$b. $4\left(1-e^{-2 t}\right) u(t)$
c. $8\left(1-e^{-2 t}\right) u(t)$d. $2\left(1-e^{-2 t}\right) u(t)$

Question 10
Not yet answered
Marked out of 1.00
PFlag question

* Edit question

The function $f(t)$ is described by the following figure.


Find $y(t)=f(t) * f(t)$.

## Select one:

a. $y(t)=\left\{\begin{array}{cc}t^{2}, & 0<t<1 \\ t^{2}-2 t, & 1<t<2 \\ 0, & \text { otherwise }\end{array}\right.$
b. $y(t)=\left\{\begin{array}{cc}t^{2}, & 0<t<1 \\ 2 t-t^{2}, & 1<t<2 \\ 0, & \text { otherwise }\end{array}\right.$
c. $y(t)=\left\{\begin{array}{cc}t, & 0<t<1 \\ 2-t, & 1<t<2 \\ 0, & \text { otherwise }\end{array}\right.$
d. $y(t)=\left\{\begin{array}{cc}t, & 0<t<1 \\ t-2, & 1<t<2 \\ 0, & \text { otherwise }\end{array}\right.$

Next

