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Elementary signals

i Unit step function
I The unit step function u(t) is 0 for negative values of t and 1

for positive values of t.

u(t) =

{
0, t < 0

1, t > 0

I The unit step function is undefined at t = 0, where it changes
abruptly from 0 to 1.
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Elementary signals

i Unit step function (cont.)
I If the abrupt change occurs at t = t0 or t = −t0 (where t0 > 0)

instead of t = 0, the unit step function becomes u(t− t0) or
u(t+ t0) which is the same as saying that u(t) is delayed or
advanced by t0 seconds.
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Elementary signals

ii Unit impulse function
I The unit impulse function δ(t) is zero everywhere except at
t = 0, where it is undefined (infinity).

δ(t) =

{
∞, t = 0

0, t 6= 0
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Elementary signals

ii Unit impulse function (cont.)
I It may be visualized as a very short duration pulse of unit

area. ∫ ∞
−∞

δ(t)dt = 1∫ ∞
−∞

f(t)δ(t− a)dt = f(a)
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iii Unit ramp function
I The unit ramp function is zero for negative values of t and

has a unit slope for positive values of t.

ramp(t) =

{
0, t < 0

t, t > 0

=tu(t)
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iv Rectangular function
I The rectangular function is defined as

rect(t) =

{
1, − 1

2 < t < 1
2

0, otherwise

=u(t+
1

2
)− u(t− 1

2
)
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Elementary signals

v Triangular function
I The rectangular function is defined as

tri(t) =


1− t, −1 < t < 0

1 + t, 0 < t < 1

0, otherwise

=(t+ 1)u(t+ 1)− 2tu(t) + (t− 1)u(t− 1)
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vi Signum function
I The signum function or sign function is an odd mathematical

function that extracts the sign of a real number.

sgn(t) =

{
−1, t < 0

1, t > 0

=2u(t)− 1
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vii Sinc function
I The sinc function, also called the ”sampling function,” is a

function that arises frequently in signal processing and the
theory of Fourier transforms. The full name of the function
is ”sine cardinal,” but it is commonly referred to by its
abbreviation, ”sinc”.

sinc(t) =
sin t

t
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Elementary signals

Example 7.6, pg. 269 (Alexander & Sadiku, 2009)

Express the voltage pulse in Fig. 7.31 in terms of the unit step.
Calculate its derivative and sketch it.
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Elementary signals

Example 7.6, pg. 269 (cont.)

Answer:

v(t) = 10[u(t− 2)− u(t− 5)],
dv(t)

dt
= 10[δ(t− 2)− δ(t− 5)]
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Practice Problem 7.6, pg. 270 (Alexander & Sadiku, 2009)

Express the current pulse in Fig. 7.33 in terms of the unit step.
Find its integral and sketch it.
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Practice Problem 7.6, pg. 270 (cont.)

Answer:
i(t) = 10[u(t)− 2u(t− 2) + u(t− 4)]∫

i(t)dt = 10[tu(t)− 2(t− 2)u(t− 2) + (t− 4)u(t− 4)]
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Example 7.7, pg. 270 (Alexander & Sadiku, 2009)

Express the sawtooth function shown in Fig. 7.35 in terms of
singularity functions.

Answer:
v(t) = 5t[u(t)− u(t− 2)]
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Practice Problem 7.7, pg. 272 (Alexander & Sadiku, 2009)

Refer to Fig. 7.39. Express i(t) in terms of singularity functions.

Answer:

i(t) = (2− 2t)u(t) + (4t− 8)u(t− 2)− (2t− 6)u(t− 3)
BEE2143 17 RMT



BEE2143 – Signals & Networks

Signals Operations

Signals Operations

Types of signals operations:

I Time reversal: f(−t)
I Time scaling: f(kt)

I Time shifting: f(t− t0)
I Amplitude scaling and shifting: af(t) + b
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Convolution

I The term convolution means ”folding”

I Convolution is an invaluable tool to the engineer because it
provides a means of viewing and characterizing physical
systems

I For example, it is used in finding the response y(t) of a
system to an excitation x(t), knowing the system impulse
response h(t)
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I This is achieved through the convolution integral, defined as

y(t) =

∫ ∞
−∞

x(λ)h(t− λ)dλ

or simply
y(t) = x(t) ∗ h(t)

where λ is a dummy variable and the asterisk denotes
convolution

I The convolution process is commutative:

y(t) = x(t) ∗ h(t) = h(t) ∗ x(t)

or

y(t) =

∫ ∞
−∞

x(λ)h(t− λ)dλ =

∫ ∞
−∞

h(λ)x(t− λ)dλ
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I This implies that the order in which the two functions are
convolved is immaterial

I The process of convolving two signals in the time domain is
better appreciated from a graphical point of view

I The graphical procedure for evaluating the convolution
integral in Eq. (15.70) usually involves four steps.

I Steps to evaluate the convolution integral:

1. Folding: Take the mirror image of h(λ) about the ordinate axis
to obtain h(−λ).

2. Displacement: Shift or delay h(−λ) by t to obtain h(t− λ).
3. Multiplication: Find the product of h(t− λ) and x(λ).
4. Integration: For a given time t, calculate the area under the

product h(t− λ)x(λ) for 0 < λ < t to get y(t) at t.
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Convolution

I To apply the four steps, it is necessary to be able to sketch
x(λ) and h(t− λ)

I To get x(λ) from the original function x(t) involves merely
replacing t with λ

I Sketching h(t− λ) is the key to the convolution process

I It involves reflecting h(λ) about the vertical axis and shifting
it by t

I Analytically, we obtain h(t− λ) by replacing every t in h(t) by
t− λ

I Since convolution is commutative, it may be more convenient
to apply steps 1 and 2 to x(t) instead of h(t)
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Convolution

Example 15.12, pg. 700 (Alexander & Sadiku, 2009)

Find the convolution of the two signals in Fig. 15.10.

Answer:
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Convolution

Example 15.12, pg. 700 (cont.)
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Convolution

Example 15.12, pg. 700 (cont.)

y(t) =



0, 0 ≤ t ≤ 1

2t− 2, 1 ≤ t ≤ 2

2, 2 ≤ t ≤ 3

8− 2t, 3 ≤ t ≤ 4

0, t ≥ 4
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Convolution

Practice Problem 15.13, pg. 703 (Alexander & Sadiku,
2009)

Given g(t) and f(t) in Fig. 15.20, graphically find
y(t) = g(t) ∗ f(t).

Answer:

y(t) =


3(1− e−t, 0 ≤ t ≤ 1

3(e− 1)e−t, t ≥ 1

0, elsewhere
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Convolution

Problem 15.43, pg. 713 (Alexander & Sadiku, 2009)

Find y(t) = x(t) ∗ h(t) for each paired x(t) and h(t) in Fig. 15.37.
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Convolution

Problem 15.43, pg. 713 (cont.)

Answer:

(a) y(t) =


1
2 t

2, 0 < t < 1

−1
2 t

2 + 2t− 1, 1 < t < 2

1, t > 2

0, otherwise

(b) y(t) = 2(1− e−t), t > 0

(c) y(t) =


1
2 t

2 + t+ 1
2 , −1 < t < 0

−1
2 t

2 + t+ 1
2 , 0 < t < 2

1
2 t

2 − 3t+ 9
2 , 2 < t < 3

0, otherwise
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