

BEE2143 – Signals & Networks Chapter 1 – Introduction to Signals and Systems

Raja M. Taufika R. Ismail

Universiti Malaysia Pahang

September 29, 2017

Signal Characteristic

Time and Frequency domains

Classification of signals:

- Continuous-time
- Discrete-time
- Continuous-value
- Discrete-value
- Random
- Nonrandom

Continuous-time signals	Discrete-time signals
- Defined values at every in-	- Defined values only at dis-
stant of time over time interval	crete points in time (not be- tween them)
– Real world (analog)	 Set of samples (usually trans- mitted as digital signal)
– E.g.: voltage, current, tem-	– E.g.: population, DNA based
perature, velocity	sequence

Classification of systems:

- Memoryless and memory
- Causal and non-causal
- Linear and nonlinear
- Time-invariant and time-variant
- Linear time-invariant (LTI)

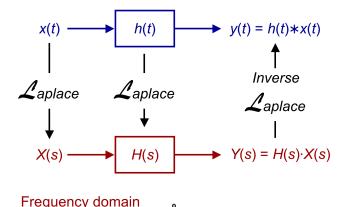
Memoryless system	Memory system
– The output at time t_0 de-	– The output at time t_0 de-
pends only on the input at the	pends on the input at the some
same time t_0	range of time t

Causal system	Non-causal system
– The output at time t_0 de-	 A system that is not a causal
pends only on the input for $t_i \leq$	system (depends on some fu-
t_0 (the system cannot antici-	ture input values and possibly
pate the input)	on some input values from the
	past or present)

Linear system	Nonlinear system
- The output is proportional to	
the input	
- Satisfies the additive, super-	 Does not satisfy the additive,
position and scaling properties	superposition and scaling prop-
	erties

Time-invariant system	Time-variant system
– A system whose output does	– A system whose output
not depend explicitly on time	characteristics depend explicitly
- If the input signal $x(t)$ pro-	upon time
duces an output $y(t)$ then any	
time shifted input, $x(t+\delta)$, re-	
sults in a time-shifted output	
$y(t+\delta)$ BEE2143	7 RMT

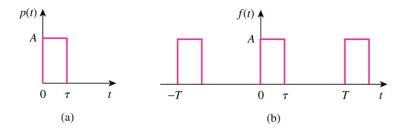
Linear time-invariant (LTI) system


- LTI system is a system that is both linear and time-invariant
- Any LTI system can be characterized entirely by a single function called the system's impulse response
- The output of the system is simply the convolution of the input to the system with the system's impulse response
- Equivalently, any LTI system can be characterized in the frequency domain by the system's transfer function, which is the Laplace transform of the system's impulse response (or Z transform in the case of discrete-time systems)
- The output of the system in the frequency domain is the product of the transfer function and the transform of the input

Linear time-invariant (LTI) system (cont.)

In other words, convolution in the time domain is equivalent to multiplication in the frequency domain

Time domain



Signal Characteristic

Periodic signals

• Periodic functions satisfy f(t) = f(t+T)

Symmetry signals

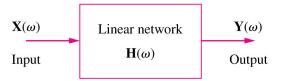
► A function f(t) is even symmetry if its plot is symmetrical about the vertical axis, that is,

$$f(-t) = f(t)$$

► A function f(t) is said to be odd symmetry if its plot is antisymmetrical about the vertical axis, that is,

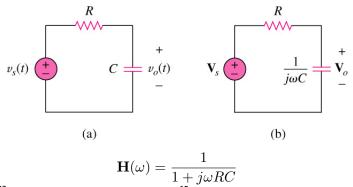
$$f(-t) = -f(t)$$

Time and Frequency domains


- In our sinusoidal circuit analysis, we have learned how to find voltages and currents in a circuit with a constant frequency source
- If we let the amplitude of the sinusoidal source remain constant and vary the frequency, we obtain the circuit's frequency response
- The frequency response of a circuit is the variation in its behavior with change in signal frequency

- The sinusoidal steady-state frequency responses of circuits are of significance in many applications, especially in communications and control systems
- A specific application is in electric filters that block out or eliminate signals with unwanted frequencies and pass signals of the desired frequencies
- Filters are used in radio, TV, and telephone systems to separate one broadcast frequency from another

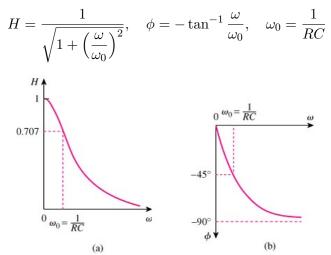
In general, a linear network can be represented by the block diagram shown in Fig. 14.1


The transfer function H(ω) of a circuit is the frequency-dependent ratio of a phasor output Y(ω) (an element voltage or current) to a phasor input X(ω) (source voltage or current)

Example 14.1, pg. 615 (Alexander & Sadiku, 2009)

For the RC circuit in Fig. 14.2(a), obtain the transfer function V_o/V_s and its frequency response. Let $v_s = V_m \cos \omega t$.

Answer:



BEE2143

Time and Frequency domains

Example 14.1, pg. 615 (Alexander & Sadiku, 2009) (cont.)

BEE2143

List of References

1. C.K. Alexander and M.N.O. Sadiku (2009), Fundamentals of Electric Circuits 4th ed., New York: McGraw-Hill.