Course Name	$:$ Signals \& Networks
Course Code	$:$ BEE2143
Pre Requisite	$:$ BUM2133 \& BEE1133
Course Type	$:$ Core Faculty
Program Offered	$:$ BEE
	$:$ BEP
	$:$ BEC

Credit Hour : 3
Lecture Hours : 3
Tutorial Hours : -
Lab Hours : 2

Synopsis

Course Outcomes

This course introduces the students to various signals transformation techniques and its application to electrical circuits. This includes Fourier Series, Fourier Transforms and Laplace Transform. The concept of frequency response is introduced in filter.

At the end of this course student should be able to:
CO 01: Distinguish the different type of signals and its operations.(C2)
CO 02: Apply Fourier and Laplace techniques in solving electrical problems. (C3)
CO 03: Analyze and differentiate several types of passive filters. (C4)
CO 04: Evaluate various signals and systems using engineering software. (P4)
CO 05: Conduct independent readings and research in designing Graphical User Interface (GUI) for any transformation technique (FS/FT/LT). (A3, LLL2)

CO/PO Mapping

	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { To } \\ & \text { O } \\ & \text { O } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ㅁ } \\ & \text { Q } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { To } \\ & \text { O } \\ & \text { O } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{O} \\ & 1 \end{aligned}$	O N N
CO 01	X											
CO 02	X											
CO 03	X											
CO 04					x							
CO 05											X	

Key Indices:

X: assessed outcomes

Syllabus
1.0 Introduction to Signals and Systems(6 Hours)1.1 Classification of signals and systems1.2 Signal Characteristic
1.3 Time and Frequency domains
1.4 Elementary signals
1.5 Signals Operations
1.6 Convolution(BT Level 2: Understanding)
2.0 Fourier Series2.1 Trigonometric Fourier Series2.2 Exponential Fourier Series2.3 Symmetry considerations in Fourier Series
2.4 Amplitude and phase spectra in Fourier Series
2.5 Applications(BT Level 3: Applying)
3.0 Fourier Transform
3.1 Definition and Properties of Fourier Transform
3.2 Fourier Transform using derivative technique
3.3 Inverse Fourier Transform
3.4 Applications(BT Level 3: Applying)
4.0 Laplace Transform(10 Hours)4.1 Definition and Properties of Laplace Transform
4.2 Inverse Laplace Transform
4.3 Applications(BT Level 3: Applying)
5.0 Filters and frequency response5.2 Transfer function of filter circuits
5.3 Frequency response of filters
(BT Level 4: Analyzing)
References
Assessment Quizzes 10\%
Laboratory 10\%
Assignments 10\%
Test 30\%
Final Examination 40\%
Total 100\%
Assessment 1: Assessment on Knowledge Domain (shorter duration)
Methods

- Final Examination, Test, Quiz

Assessment on Knowledge Domain (longer duration)

- Assignment, Project

3: Assessment on Skills and Affective Domains

- Presentation, Laboratory Assessment, Demonstration, Self/Peer/Group Evaluation.
4: Assessment on Report as Final Product
- Thesis/Dissertation/Industrial Training Report

Teaching Approach Lecture, Active Learning, Group Assignment

Course Homepage http://notes.ump.edu.my/fkee/BEE2143

